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Abstract. This paper characterizes the development of modular branching struc-
tures that satisfy three assumptions: (a) subapical branching, meaning that new
branches can be created only near the apices of the existing branches, (b) finite
number of module types and states, and (c) absence of interactions between co-
existing components of the growing structure. These assumptions are captured
in the notion of subapical bracketed deterministic L-systems without interactions
(sBDOL-systems). We present the biological rationale for sBDOL-systems and
prove that it is decidable whether a given BDOL-system is subapical or not. In
addition, using the assumption that modules, once created, continue to exist, we
show that (propagating) sBDOL-systems are too weak to generate acrotonic and
mesotonic branching structures, which are often observed in nature. Their devel-
opment must therefore be controlled by more involved mechanisms, overriding
at least one of the assumptions (a-c) above.

1 Introduction

Bracketed L-systems, introduced by Lindenmayer [8, 9] to model the development of
branching structures, have been investigated to a lesser degree from the theoretical point
of view than the L-systems without brackets (c.f. [10, page 138]). In contrast, most prac-
tical applications of L-systems fall in the areas of modeling, simulation, and visualiza-
tion of higher plants with branches (for example, see [15]). Consequently, theoretical
results pertinent to this class of structures are needed.

We analyze the class of branching structures and developmental sequences gener-
ated bysubapicaldeterministic bracketed L-systems without interactions (subapical
BDOL-systems, or sBDOL-systems in short), formalized and first studied by Kele-
menová [7]. For the class of non-branching structures, a related notion of filamen-
tous systems with apical growth was introduced by Nirmal and Krithivasan [13] (see
also [1, 14, 20]). Intuitively, a BDOL-system is subapical if new branches are created
only near the apices (tips) of the existing branches. This notion captures the fundamen-
tal biological observation that new structural components of a growing plant, such as
branches, leaves, or flowers, can only be initiated byapical meristems, that is the zones
of actively dividing cells situated near the apices of branch axes [19, page 1].

A sample developmental sequence generated by a subapical BDOL-system is shown
in Figure 1a. For a comparison, Figure 1b shows the development of an “everywhere
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Fig. 1. A comparison of the development of two branching structures. Structure (a) develops
with subapical branching; structure (b) does not (branches everywhere). The thin lines indicate
branches created in the current derivation step.

branching” structure that violates the assumption of subapical branching. In Section 2
we restate Kelemenov´a’s definition of subapical BDOL-systems, provide a corrected
proof of her assertion that it is decidable whether a given BDOL-system is subapical or
not, and illustrate the discussed notions using several biologically motivated examples.

Frijters and Lindenmayer [4] observed that in structures generated using subapical
BDOL-systems, branches closer to the apex are less developed than those positioned
closer to the base. Structures satisfying this property are calledbasitonic[2, page 248]
(Figure 2a). In nature one also findsmesotonicandacrotonicstructures, with the most
developed branches situated near the middle or the top of the mother branch (Figures 2b
and 2c). The problem of generating mesotonic and acrotonic structures using L-systems

a b c

Fig. 2. Basitonic (a), mesotonic (b), and acrotonic (c) branching patterns



has been first discussed by Frijters and Lindenmayer in reference to the inflorescences
of Aster novae-angliae[3], and extended to other inflorescences by Janssen and Linden-
mayer [5] (see also [15, Section 3.3.3]). L¨uck, Lück, and Bakkali [12] (see also [11])
presented a detailed study of acrotonic, mesotonic and basitonic branching patterns
using a formalism related to L-systems. In general, the proposed mechanisms for mod-
eling mesotonic and acrotonic structures can be divided into two categories: those pos-
tulating control of development usingsignals[3, 5], and those introducing numerical
parameters to characterizegrowth potentialor vigor of individual apices [12]. Both
mechanisms require a departure from the class of DOL-systems, either by introducing
context-sensitive rules to represent signals, or by assuming an infinite alphabet to repre-
sent the set of vigor values. In Section 3 we prove that at least in the case of propagating
development (where modules, once created, remain in the structure) these departures
are indeed necessary, as neither acrotonic nor mesotonic developmental sequences can
be generated by propagating sBDOL-systems. This result is related to Theorem 3.2 of
Kelemenová [7], which, however, was formulated without an explicit reference to the
notion of acrotony.

2 Subapical bracketed DOL-systems

Let � denote a finite nonemptyalphabet, the brackets[ and] be two symbols outside
of � calledbranch delimiters, and# be another symbol outside of� called thebranch
marker. We will denote the respective extensions of� by�E = � [ f[; ]g and�# =

� [ f#g.

Definition 1. A word over�E is well nestediff it can be specified by finitely many
applications of the following rules:

– every wordu 2 �� is well nested;
– if u; v 2 ��

E
are well nested then[u] anduv are also well nested.

A word [w] 2 ��

E
such thatw is well nested is called abranch.

Definition 2. Thestandard decompositionof a branch[w] 2 ��

E
is a word of the form:

[w] = [x1[�1]x2[�2] : : : xn[�n]xn+1];

where the subwordsx1; x2; : : : ; xn+1 2 �� do not contain brackets, and the subwords
�1; �2; : : : ; �n 2 ��

E
are well nested. The wordsx1x2 : : : xnxn+1 andx1#x2# : : : xn#xn+1

are called the (main)axisand themarked axisof [w], respectively. Within these axes,
the subwordsx1; x2; : : : ; xn are called theinternodes, and the subwordxn+1 is called
theapex. The words[�1]; [�2]; : : : ; [�n] are called the (first-order)lateral branchesof
[w].

It is known that the standard decomposition of a branch is unique, thus the above
definition is unambiguous [6]. The terminology corresponds to the standard interpre-
tation of well nested bracketed words as string representations of branching struc-
tures [8, 9]. As the “empty branch”[] appears to have no biological interpretation, we
assume in practice that the wordw in any branch[w] is not empty. This assumption,
however, is not essential to the mathematical reasoning presented in this paper.



Example 1. Figure 3 shows a branching structure represented by the word

[w] = [

x1z}|{
ab [cd]|{z}

[�1]

x2z}|{
ef [g[h]i]| {z }

[�2]

x3z}|{
j [k]|{z}

[�3]

x4z}|{
lm ]:

The wordabefjlm is the axis of[w], ab#ef#j#lm is the marked axis,x1 = ab,
x2 = ef andx3 = j are the internodes, andx4 = lm is the apex. The subwords
[�1] = [cd], [�2] = [g[h]i] and[�3] = [k] denote the lateral branches, where[�1] and
[�3] have only apices, whereas[�2] has an internodeg, an apexi, and a (second-order)
lateral branch[h].
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Fig. 3. Example of a branching structure

Diagrams such as that shown in Figure 3 can be thought of as graphs representing
the branchingtopologyof modeled organisms, for example algae, herbaceous plants,
or trees. Depending on the complexity of the organism and the abstraction level of the
model, symbols may represent individual cells or largermodules[16] of the structure.
The bracketed words may be also assigned ageometricinterpretation, needed to au-
tomatically visualize the models using computer graphics [15]. Within this paper we
focus on the topological interpretation.

In order to describe the development of a structure over time we use the formalism
of L-systems. We assume that the reader is familiar with the fundamental notions of L-
system theory, such as a DOL-system, developmental sequence, and language generated
by an L-system (see [15, 17, 18] for a reference), and only recall the definition of a
bracketed DOL-system, which is essential to this paper.

Definition 3. A bracketed DOL-system(BDOL-system) is a DOL-systemS = h�E ; [w0]; P i,
where theaxiom[w0] is a well nested word over the alphabet�E , and eachproduction
in theproduction setP � �E ���

E
has one of the following forms:

– a �! �, wherea 2 �, � 2 ��

E
, and� is well nested,

– [ �! [ , or



– ] �! ] .

Example 2. The DOL-systemS = hf1; 2; : : : ; 9; [; ]g; [1]; P i with productions:

1 �! 23; 2 �! 2; 3 �! 24; 4 �! 25; 5 �! 65;

6 �! 7; 7 �! 8; 8 �! 9[3]; 9 �! 9; [ �! [; ] �! ]

is a BDOL system. The developmental sequence generated byS begins with the fol-
lowing words:

[w0] = [1]

[w1] = [23]

[w2] = [224]

[w3] = [2225]

[w4] = [22265]

[w5] = [222765]

[w6] = [2228765]

[w7] = [2229[3]8765]

[w8] = [2229[24]9[3]8765]

[w9] = [2229[225]9[24]9[3]8765]

[w10] = [2229[2265]9[225]9[24]9[3]8765]

[w11] = [2229[22765]9[2265]9[225]9[24]9[3]8765]

[w12] = [2229[228765]9[22765]9[2265]9[225]9[24]9[3]8765]

[w13] = [2229[229[3]8765]9[228765]9[22765]9[2265]9[225]9[24]9[3]8765]

This L-system was proposed by Lindenmayer [8] as a mathematical model of the devel-
opment of a red algaCallithamnion roseum. Symbols of the alphabet� denote individ-
ual cells, and the matching pairs of brackets delimit branches. Selected developmental
stages obtained by this model with the addition ofturtle geometrysymbols [15] to in-
dicate the direction of branching are shown in Figure 4.

It is easy to notice that BDOL-systems always generate well nested words. The
converse, however, is not true, as languages of well nested words can also be generated
by DOL-systems that do not satisfy the requirements of Definition 3.

Example 3. The DOL-systemS = hfA;B;C; [; ]g; [AB]; P i with productions

A �! A[C; B �! C]B; C �! C; [ �! [; ] �! ]

is not a BDOL-system, because the successors of two productions are not well nested
words. Nevertheless, it generates well nested words, as suggested by the following ini-
tial elements of the developmental sequence:

[w0] = [AB]

[w1] = [A[CC]B]

[w2] = [A[C[CC]C]B]

� � �

In this paper we adhere to the biologically well justified original notion of bracketed
L-systems [8, 9], where branches can be initiated only by individual parent modules. In
this context, the notion of subapical development is formalized as follows.



Fig. 4. Developmental stages[w0]; [w4]; [w7]; [w9]; [w11]; [w13]; and[w15] of the model ofCal-
lithamnion roseum

Definition 4. Given a BDOL-systemsS = h�E ; [w0]; P i, a lettera 2 � is called
branchingiff it produces a word including a lateral branch[�]:

a �! �[�]
; where �; �; 
 2 ��

E
:

The subset of� consisting of all branching letters inS is denoted�B .

Definition 5. A BDOL-systemS = h�E ; [w0]; P i is subapical with respect to the main
axis(of the generated branches) iff for any[w] 2 L(S) with the standard decomposition

[w] = [x1[�1]x2[�2] : : : xn[�n]xn+1];

the internodesx1; x2; : : : ; xn do not contain branching letters:

x1; x2; : : : ; xn 2 (�n�B)
�:

The class of BDOL-systems subapical with respect to the main axis is obviously
included in the class of unrestricted BDOL-systems.

Example 4. The BDOL-systemS = h�E ; [F ]; P i with alphabet� = fFg and pro-
ductions

F �! F [F ]F; [ �! [; ] �! ]

generates the sequence of everywhere branching structures shown in Figure 1b. This
L-system is not subapical with respect to the main axis, because the branching letterF

appears in the internode of the branch[F [F ]F ] generated byS.



Example 5. The BDOL-systemS = hfA;B;Cg; [ABC]; P i with productions

A �! C; B �! B; C �! [B]; [ �! [; ] �! ]

is not subapical with respect to the main axis, because in the developmental sequence

[ABC] =) [CB[B]] =) [[B]B[B]];

the branching letterC appears in the internode. Note that the technique used in [7, page
188] to decide whether a BDOL-systems is subapical or not would misclassify this
L-system as subapical.

Theorem 1. It is decidable whether a given BDOL-system is subapical with respect to
the main axis.

Proof. Consider a mappingf : ��

E
! ��

# that substitutes branches[w] 2 ��

E
by their

marked axes. Thus, assuming the standard decomposition of[w], we have:

f([w]) = f([x1[�1]x2[�2] : : : xn[�n]xn+1]) = x1#x2# : : : xn#xn+1:

Given a BDOL-systemS = h�E ; [w0]; P i, construct a DOL-system

S# = h�#; f([w0]); P#i;

whereP# = f# �! #g [ P 0, and productions inP 0 are obtained by replacing the
successors of productions inPnf[�! [; ] �!]g with their marked axes:

if a �! � belongs toP thena �! f(�) belongs toP 0.

It is clear that the L-systemS# generates the set of marked axes of the words inL(S):

L(S#) = ff([w]) : [w] 2 L(S)g = f(L(S)):

According to Definition 5, a BDOL-systemS is subapical with respect to the main
axis iff no branching letters appear in the internodes of words[w] 2 L(S). Since the
internodes of words[w] andf([w]) are the same, the criterion for subapicality can be
expressed as

L(S#) \��

#�B�
�

##�� = ;:

Thus, a BDOL-systemS is subapical with respect to the main axis if and only if the
intersection of the languageL(S#) generated by a related DOL-systemS# and the
regular language��

#�B�
�

##�� is empty. This problem is decidable, because:

– the class of languages generated by DOL-systems is included in the class of lan-
guages generated by extended OL-systems (EOL-systems) [17, page 54],

– the class of EOL languages is closed with respect to intersection with regular lan-
guages [17, Theorem 1.8],

– the emptiness problem is decidable for EOL languages [17, Theorem 5.6].|



The reference to the general properties of EOL-systems and regular languages makes
the proof of Theorem 1 concise, but does not lead to a straightforward algorithm for
testing subapicality of given BDOL-systems. Since subapicality is an essential property
of biologically motivated models of branching structures, we also present a more direct
test.

We say that the lettera occurs to the left ofb in a wordw 2 ��, and note(a; b) 2
� (w), iff w = xaybz for somex; y; x 2 ��. We extend this definition to languages
using the equation:

� (L) =
[

w2L

� (w):

In order to construct the relation� (L) for the languageL generated by an arbitrary
non-bracketed DOL-systemT = h�;w0; P i, we consider the initial elements of the
developmental sequence generated byT ,

w0 =) w1 =) : : : wi =) : : : ;

and construct the family of relations�i 2 � ��:

�0 = ;;
�i+1 = �i [ � (wi) for i = 0; 1; 2; : : : :

Since the alphabet� is finite, there exists a natural numberk � (card(�))2 such
that thek-th iteration of the above formula will not add new elements to�k. Due to
the context-free character of derivations in DOL-systems, the subsequent iterations also
will not add new elements:�k = �k+j for all j � 0. Thus, the set�k contains all
pairs of letters(a; b) 2 � such thata occurs to the left ofb in some word ofL(T ), and
�k = � (L(T )).

In order to apply this result to test the subapicality of a given BDOL-systemS =

h�E ; [w0]; P i, we construct the relation� (L(S#)) for the languageL(S#) generated
by the DOL-systemS# associated withS. The L-systemS is subapical with respect to
the main axis iff there is no branching lettera 2 �B such that(a;#) 2 � (L(S#)).

Example 6. We will show that the BDOL-systemS from Example 2 is subapical with
respect to the main axis. To this end, we first create a DOL-systemS# = hf1; 2; : : :9;#g; 1; P#i
associated withS. The setP# consists of the production# �! # and productions of
P except for[�! [ and] �!]; production8 �! 9[3] is replaced by8 �! 9#. The
relationoccurs to the leftfor the languageL(S#) is given by Figure 5. An arrow from
nodea to nodeb indicates that lettera occurs to the left ofb in a word ofL(S#). The
arrows that can be reconstructed as a transitive closure of the graph shown in Figure 5
have been omitted for clarity (the relation� (L(S#)) is transitive in this example). We
observe that the branching symbol8 does not occur to the left of the branch marker#,
thus the L-systemS is subapical with respect to the main axis.

We will now extend the notion of subapicality from the main axis to the entire
branching structure.

Definition 6. Given a BDOL-systemsS, a branch of orderN is characterized recur-
sively as follows:
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Fig. 5.Simplified graph of the relation� (L(S#)) for the developmental model ofCallithamnion
roseum

– a word[w] 2 L(S) is a branch of orderN = 0,
– if [w] = [x1[�1]x2[�2] : : : xn[�n]xn+1] is a branch of orderN � 0 then the sub-

words[�1]; [�2]; : : : ; [�n] are branches of orderN + 1.

The set of all branches (of any orderN � 0) generated byS is denotedLB(S).

Definition 7. A BDOL-systemS is calledsubapical with respect to all branches, or in
shortsubapical, iff in the standard decomposition of any branch

[�] = [y1[�1]y2[�2] : : : ym[�m]ym+1] 2 LB(S)

the internodesy1; y2; : : : ; ym do not contain branching letters.

The following extension of Theorem 1 provides an effective method for deciding
whether a BDOL-system is subapical or not.

Theorem 2. Let S = h�E ; [w0]; P i be a BDOL-system, and[w1]; [w2]; : : : ; [wp] be
the branches that occur in successors of productions inP accessible from the axiom
[w0]. Denote bySi the BDOL-systemh�E ; [wi]; P i, wherei = 1; 2; : : : ; p. The L-
systemS is subapical with respect to all branches iff each of the L-systemsS; S1; S2; : : : ; Sp
is subapical with respect to the main axis.

Proof. Each branch[�] in the setLB(S) belongs to a developmental sequence that
starts with one of the words[w0]; [w1]; [w2]; : : : ; [wp]. Consequently, the set of the axes
of all branches generated byS is the same as the set of the main axes of the branches
generated by L-systemsS; S1; S2; : : : ; Sp, and the requirement that no branching let-
ters occur in the internodes of branches[�] 2 LB(S) is equivalent to the requirement
that no branching letters occur in the main axes of words[w] generated by L-systems
S; S1; S2; : : : ; Sp.|

Example 7. We will show that the BDOL-system from Example 2 is subapical with
respect to all branches. To this end we consider both the original L-systemS and its
modificationS1 = hf1; 2; : : : ; 9; [; ]g; [3]; P i, in which the original axiom[1] has been
replaced by branch[3] created by production8 �! 9[3]. The graph of the relation
� (L(S#)) for the L-systemS# associated withS was constructed in Example 6 and
shown in Figure 5. The graph for the L-systemS#1 associated withS1 is similar, except
that node1 is absent and there is no arrow between nodes2 and3. The branching letter
8 does not occur to the left of the branch marker# in either graph, thus both L-systems
S andS1 are subapical with respect to the main axis, and the L-systemS is subapical
with respect to all branches.



3 Acrotonic languages

According to Section 1, mesotonic or acrotonic structures share the property that the
most developed lateral branches are not situated near the bottom of the mother branch.
In this section, we introduce a definition of acrotonic languages intended to formalize
this intuitive characterization. We then prove that the acrotonic languages cannot be
generated by subapical BDOL-systems.

Definition 8. A languageL 2 ��

E
is calledacrotoniciff for every naturalk there exists

a branch[w] 2 L with the standard decomposition

[x1[�1]x2[�2] : : : xn[�n]xn+1]

and a sequence of indices

1 � i1 < i2 < : : : < ik � n

such that
lg(�i1 ) < lg(�i2 ) < : : : < lg(�ik ):

The notationlg(�ij ) denotes thesizeof the branch[�ij ], measured as the number of
letters other than[ and] in the word�ij .

According to this definition, a languageL is acrotonic if it contains branches with
arbitrarily long (sub)sequences of lateral branches, the size of which increases while
traversing the main axis from the bottom up.

Theorem 3. An acrotonic languageL cannot be generated by a propagating subapical
BDOL-system.

Proof. Suppose, by contradiction, that there exists an acrotonic languageL generated
by a propagating subapical BDOL-systemS = h�E ; [w0]; P i. Introduce the term
branch initial to denote any branch appearing in a production successor, and letN stand
for the total number of branch initials that appear in the successors of productions inP .
Consider a word[w] 2 L satisfying conditions set forth in Definition 8 for somek > N .
Sincek > N , there are at least two branches in the sequencef[�i1 ]; [�i2 ]; : : : ; [�ik ]g,
say[�p] and[�q ], produced from different occurrences of the same branch initial[v]:

a �! �1[v]�2 and [v] =)mp [�p];

b �! �1[v]�2 and [v] =)mq [�q ]:

Assuming thatp < q, we havelg(�p) < lg(�q). According to the principle of subapical
branching (Definition 5), branch[�p] must have been initiated not later than[�q ], thus
the derivation lengthmp is not less thanmq (Figure 6).Since the BDOL-systemS is deterministic, the following derivation exists:

[v] =)mq [�q ] =)
mp�mq [�p]:

The L-systemS is propagating, thuslg(�q) � lg(�p). This contradicts the inequality
lg(�p) < lg(�q) obtained earlier and leads to the conclusion that an acrotonic language
L cannot be generated by a propagating subapical BDOL-system.|



mq
steps

[w] = [    ...    [      αp      ]   ...  [    αq   ]    ...    ]

mp
steps

[v]

b

[v]

a

[w0]

Fig. 6. Derivation tree illustrating the proof of Theorem 3

.

4 Conclusions

Subapical branching is an essential characteristic of plant development. In Section 2,
we recalled the definition of subapical branching formulated by Kelemenov´a [7] within
the conceptual framework of L-systems, and showed that subapicality is a decidable
property of BDOL-systems. We also presented a practical method for testing whether
a given BDOL-system is subapical or not, and illustrated it using a model of a red
algaCallithamnion roseumas an example. It is interesting to note that some models of
plant-like structures devised for computer graphics purposes, such as the everywhere-
branching structure considered in Example 4 and structures shown in [15, Figures 1.24
b,c, 1.25 and 1.26]), do not develop according to the principle of subapical branching
and therefore cannot be considered biologically correct.

Branching structures can be generally categorized as basitonic, mesotonic, or acro-
tonic, depending on whether the most vigorous lateral branches are situated near the
base of the plant, in its middle zone, or near the top. In Section 3, we applied notions of
L-systems to propose a formal definition of acrotony (including mesotony as a special
case) and proved that acrotonic structures cannot be generated by propagating subapi-
cal BDOL-systems. Consequently, control mechanisms beyond those expressible using
propagating sBDOL-system are necessary to model the development of acrotonic struc-
tures. Two types of mechanisms, based on information flow between coexisting plant
modules [5, 15] or unlimited number of states that may characterize individual mod-
ules [11, 12] have been considered in the literature.

The results reported in this paper leave many questions open for further research.
The first group of questions focuses on the formal properties of bracketed L-systems.

– We conjecture that Theorem 3 can be extended to non-propagatingsubapical BDOL-
systems. Is this conjecture true?

– Consider two L-systems with the alphabetfA;B; I; Lg and axiom[BA]. The only
non-identity production of L-systemS1 is A �! I [L][L]A, and of L-systemsS2
is B �! BI [L][L]. Both L-systems generate the same developmental sequence
fB(I [L][L])nA : n = 0; 1; 2; : : :g, but L-systemS1 is subapical whileS2 is not.
This raises the following questions:



� Given an arbitrary BDOL-systemS, is it decidable whether there exists a sub-
apical BDOL-systemS0 generating the same developmental sequence (or lan-
guage)? If the answer is positive, is there an effective procedure for findingS0,
givenS?

� Is it decidable whether a given developmental sequence or language can be
generated by a subapical BDOL-system?

– The class of L-systems considered in this paper has been limited to BDOL-systems,
but similar questions are pertinent to other classes of L-systems as well. For ex-
ample, is it decidable whether a given bracketed context-sensitive L-system (BIL-
system) is subapical or not? Is it decidable whether a given BIL-system generates
an acrotonic structure?

Fig. 7. Development of a sympodial branching structure generated by a BDOL-systemS with
axiom [A] and productionsA �! E[C]B; B �! E[A]E; C �! D; D �! A; E �! E;

[ �! [; ] �! ]: Biologists would qualify this structure as acrotonic, although it does not satisfy
Definition 8. Developmental stagesw3,w6, andw9 are shown.

A mathematical definition that aims at capturing the essence of a natural phenomenon is
always somewhat arbitrary; we cannot prove that it is “right” or “wrong”, although we
can argue whether it faithfully reflects our intuition of the phenomenon and is operative
as an element of a theory. In the context of this paper, such questions are related to the
notions of subapical branching and acrotony.

– Definitions of subapical branching (5 and 7) present only one possible formaliza-
tion of the underlying biological concept. What are the implications of alternative
definitions, for example based on the conditions that:



� branch creation is restricted to a predefined number of distal (topmost) modules
in branches of all orders, or

� no new branch can be created below a predefined number of existing branches
(counting from the apex down)?

– The proposed definition of acrotony (8) refers to the number of modules in a branch
as a measure of the branch size. Other measures are also possible, for example
based on the number of modules along the axes of lateral branches, the maximum
branching order within the lateral branches, or the lengths of the axes in case of
models operating on the geometric level. What are the implications of these defini-
tions?

– Definition 8 requires that an arbitrarily long sequence of branches of increasing
size be found while traversing the axis of a developing plant from the base up
(acropetally). In nature, however, we always deal with finite structures, thus as-
sumptions describing what an underlying developmental mechanism would pro-
duce if it was allowed to operate indefinitely cannot be experimentally verified. Is
there an alternative formal definition of acrotony that would capture the increased
complexity of acrotonic structures compared to basitonic structures, yet would ap-
ply to finite structures?

– The proposed definition of acrotony is more appropriate formonopodialthansym-
podial branching structures. A monopodial structure is characterized by a pro-
nounced main axis that may carry an arbitrarily large number of lateral branches.
In contrast, a sympodial structure has a repetitive branching pattern in which the
number of lateral branches carried by each axis may be small, even if the whole
structure is potentially unlimited (Figure 7). Biologists would qualify a structure
that has increasingly long (or better developed) branches along each axis as an
acrotonic structure irrespective of the number of branches carried by each axis.
How should the definition of acrotony be improved to encompass both monopodial
and sympodial structures?

In spite of the spectacular progress of the L-system theory since its inception almost
thirty years ago, many fundamental problems pertinent to plant modeling remain open.
They point to a fertile area for a continuing research bridging biology, computer graph-
ics, and theoretical computer science.
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