
Animation of Plant Development

Przemyslaw Prusinkiewiczy, Mark Hammely and Eric Mjolsnessz

yDepartment of Computer Science
University of Calgary

Calgary, Alberta, Canada T2N 1N4
e-mail: pwpjhammel@cpsc.ucalgary.ca

zDepartment of Computer Science
Yale University

New Haven, CT 06520-2158

From Proceedings of SIGGRAPH 93 (Anaheim, California, August 1–6, 1993),
In Computer Graphics Proceedings, Annual Conference Series, 1993,

ACM SIGGRAPH, pp. 351–360.

For technical reasons, the formatting of this paper
is slightly different from the original publication.

Animation of Plant Development

Przemyslaw Prusinkiewicz Mark S. Hammel Eric Mjolsness

Department of Computer Science Department of Computer Science Department of Computer Science
University of Calgary University of Calgary Yale University

Calgary, Alberta, Canada T2N 1N4 Calgary, Alberta, Canada T2N 1N4 New Haven, CT 06520-2158

ABSTRACT

This paper introduces a combined discrete/continuous model of
plant development that integrates L-system-style productions and
differential equations. The model is suitable for animating simu-
lated developmental processes in a manner resembling time-lapse
photography. The proposed technique is illustrated using several
developmental models, including the flowering plants Campanula
rapunculoides, Lychnis coronaria, and Hieracium umbellatum.

CR categories: F.4.2 [Mathematical Logic and Formal Lan-
guages]: Grammars and Other Rewriting Systems: Parallel rewrit-
ing systems, I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism: Animation, I.6.3 [Simulation and Mod-
eling]: Applications, J.3 [Life and Medical Sciences]: Biology

Keywords: animation through simulation, realistic image synthe-
sis, modeling of plants, combined discrete/continuous simulation,
L-system, piecewise-continuous differential equation.

1 INTRODUCTION

Time-lapse photography reveals the enormous visual appeal of de-
veloping plants, related to the extensive changes in topology and
geometry during growth. Consequently, the animation of plant
development represents an attractive and challenging problem for
computer graphics. Its solution may enable us to retrace the growth
of organs hidden from view by protective cell layers or tissues,
illustrate processes that do not produce direct visual effects, and
expose aspects of development obscured in nature by concurrent
phenomena, such as the extensive daily motions of leaves and flow-
ers. Depending on the application, different degrees of realism may
be sought, ranging from diagrammatic representations of develop-
mental mechanisms to photorealistic recreations of nature’s beauty.

Known techniques for simulating plant development, such as L-
systems [16, 27, 28, 31], their variants proposed by Aono and Ku-
nii [1], and the AMAP software [4, 10], operate in discrete time,
which means that the state of the model is known only at fixed time

intervals. This creates several problems if a smooth animation of
development is sought [27, Chapter 6]:

� Although, in principle, the time interval can be arbitrarily
small, once it has been chosen it becomes a part of the model
and cannot be easily changed. From the viewpoint of com-
puter animation, it is preferable to specify this interval as
an easy to control parameter, decoupled from the underlying
model.

� The continuity criteria responsible for the smooth progres-
sion of shapes during animation can be specified more easily
in the continuous time domain.

� It is conceptually elegant to separate the model of devel-
opment, defined in continuous time, from its observation,
taking place in discrete intervals.

Smooth animations of plant development have been created by
Miller (a growing coniferous tree [19]), Sims (artificially evolved
plant-like structures [30]), and Prusinkiewicz et. al. (a growing
herbaceous plant Lychnis coronaria [24]), but the underlying tech-
niques have not been documented in the literature. Greene proposed
a model of branching structures [12] suitable for animating accre-
tive growth [11], but this model does not capture the non-accretive
developmental processes observed in real plants.

This paper introduces a mathematical framework for modeling
plants and simulating their development in a manner suitable for
animation. The key concept is the integration of discrete and con-
tinuous aspects of model behavior into a single formalism, called
differential L-systems (dL-systems), where L-system-style produc-
tions express qualitative changes to the model (for example, the
initiation of a new branch), and differential equations capture con-
tinuous processes, such as the gradual elongation of internodes.

The proposed integration of continuous and discrete aspects of de-
velopment into a single model has several predecessors.

Barzel [2] introduced piecewise-continuous ordinary differential
equations (PODEs) as a framework for modeling processes de-
scribed by differential equations with occasionally occurring discon-
tinuities. PODEs lack a formal generative mechanism for specifying
changes to system configuration resulting from discrete events, and
therefore cannot be directly applied to simulate the development of
organisms consisting of hundreds or thousands of modules.

Fleischer and Barr [7] addressed this limitation in a model of mor-
phogenesis consisting of cells developing in a continuous medium.

The configuration of the system is determined implicitly by its ge-
ometry. For example, in a simulated neural network, a synapse is
formed when a growing dendrite of one cell reaches another cell.

Mjolsness et. al. [21] pursued an alternative approach in a connec-
tionist model of development. Differential equations describe the
continuous aspects of cell behavior during interphase (time between
cell divisions), while productions inspired by L-systems specify
changes to the system configuration resulting from cell division
and death. The connectionist model makes it possible to consider
networks with arbitrary topology (not limited to branching struc-
tures), but requires productions that operate globally on the entire
set of cells constituting the model. This puts a practical limit on the
number of components in the system.

Fracchia et. al. [9] (see also [27, Chapter 7]) animated the devel-
opment of cellular layers using a physically-based model in which
differential equations simulate cell growth during the interphase,
and productions of a map L-system capture cell divisions. The pro-
ductions operate locally on individual cells, making it possible to
simulate the development of arbitrarily large layers using a finite
number of rules. Unfortunately, this technique does not seem to
extend beyond the modeling of cellular layers.

Timed L-systems [27, Chapter 6] were introduced specifically as a
formal framework for constructing models of branching structures
developing in continuous time. They operate under the assumption
that no information exchange between coexisting modules takes
place. This is a severe limitation, as interactions between the mod-
ules are known to play an important role in the development of
many plant species [14, 27, 28]. A practical application of timed
L-systems to animation is described by Noser et. al. [22].

The model of development proposed in this paper combines ele-
ments of PODEs, the connectionist model, and L-systems. The
necessary background in L-systems is presented in Section 2. Sec-
tions 3 and 4 introduce the definition of differential L-systems and
illustrate it using two simple examples. Section 5 applies combined
discrete/continuous simulation techniques to evaluate dL-systems
over time. Section 6 focuses on growth functions, which char-
acterize continuous aspects of model development. Application of
differential L-systems to the animation of the development of higher
plants is presented in Section 7, using the models of a compound
leaf and three herbaceous plants as examples. A summary of the
results and a list of open problems conclude the paper.

2 L-SYSTEMS

An extensive exposition of L-systems applied to the modeling of
plants is given in [27]. Below we summarize the main features of
L-systems pertinent to the present paper.

A

A
B B

L L
I

Figure 1: Example of a typical
L-system production

We view a plant as a linear
or branching structure com-
posed of repeated units called
modules. An L-system de-
scribes the development of
this structure in terms of
rewriting rules or produc-
tions, each of which replaces
the predecessor module by
zero, one, or more succes-
sor modules. For example,
the production in Figure 1 re-

places apexA by a structure consisting of a new apexA, an internode
I , and two lateral apices B supported by leaves L.

In general, productions can be context free and depend only on the
replaced module, or context-sensitive and depend also on the neigh-
borhood of this module. A developmental sequence is generated
by repeatedly applying productions to the consecutively obtained
structures. In each step, productions are applied in parallel to all
parts of the structure obtained so far.

The original formalism of L-systems [16] has a threefold discrete
character [17]: the modeled structure is a finite collection of mod-
ules, each of these modules is in one of a finite number of states, and
the development is simulated in discrete derivation steps. An exten-
sion called parametric L-systems [25, 27] increases the expressive
power of L-systems by introducing a continuous characterization of
the module states. Each module is represented by an identifier de-
noting the module type (one or more symbols starting with a letter)
and a state vector of zero, one, or more numerical parameters. For
instance, M = A(5; 9:5) denotes a module M of type A with two
parameters w1 = 5 and w2 = 9:5, forming the vector w = (5; 9:5).
The interpretation of parameters depends on the semantics of the
module definition, and may vary from one module type to another.
For example, parameters may quantify the shape of the module, its
age, and the concentration of substances contained within it.

Figure 2: Turtle
interpretation of
a sample string

In the formalism of L-systems, modeled
structures are represented as strings of
modules. Branching structures are cap-
tured using bracketed strings, with the
matching pairs of brackets [and] delim-
iting branches. We visualize these struc-
tures using a turtle interpretation of strings
[23, 28], extended to strings of modules
with parameters in [13, 25, 27]. A prede-
fined interpretation is assigned to a set of
reserved modules. Some of them represent
physical parts of the modeled plant, for ex-
ample a leaf or an internode, while others

represent local properties, such as the magnitude of a branching
angle. Reserved modules frequently used in this paper are listed
below:
F (x) line segment of length x,
+(�);�(�) orientation change of the following line by ��

degrees with respect to the preceding line,
@X(s) a predefined surface X scaled by the factor s.

The interpretation of a string of modules proceeds by scanning it
from left to right and considering the reserved modules as commands
that maneuver a LOGO-style turtle. For example, Figure 2 shows
the turtle interpretation of a sample string:

F (1)[+(45)@L(0:75)]F (0:8)[�(30)@L(0:5)]F (0:6)@K(1);

where symbols @L and @K denote predefined surfaces depicting
a leaf and a flower.

3 DEFINITION OF dL-SYSTEMS

Differential L-systems extend parametric L-systems by introducing
continuous time flow in place of a sequence of discrete derivation
steps. As long as the parameters w of a module A(w) remain in the
domain of legal values DA, the module develops in a continuous

way. Once the parameter values reach the boundary CA of the
domainDA, a production replaces module A(w) by its descendants
in a discrete event. The form of this production may depend on
which segment CAk of the boundary of DA has been crossed.

M1

M2

M3

M4

M5

. . .

. . .

. . .

time0 tα tβ

Figure 3: Fragment of the lineage tree
of a hypothetical modular structure

For example, module
M2 in Figure 3 is cre-
ated at time t� as one
of two descendants
of the initial module
M1. It develops in the
interval [t�; t�), and
ceases to exist at time
t� , giving rise to two
new modules M4 and
M5. The instant t� is

the time at which parameters of M2 reach the boundary of its do-
main of legal states D. A hypothetical trajectory of module M2 in
its parameter space is depicted in Figure 4.

In order to formalize the above description, let us assume that the
modeled structure consists of a sequence of modules (an extension
to branching structures is straightforward if a proper definition of
context is used [27, 28]). The state of the structure at time t is
represented as a string:

� = A1(w1)A2(w2) � � �An(wn):

The module Ai�1(wi�1) immediately preceding a given module
Ai(wi) in the string � is called the left neighbor or left context of
Ai(wi), and the moduleAi+1(wi+1) immediately followingAi(wi)

is called its right neighbor or right context. When it is inconvenient
to list the indices, we use the symbols <, >, and/or subscripts l, r
to specify the context of A(w), as in the expression:

Al(wl) < A(w) > Ar(wr):

The continuous behavior of A(w) is described by an ordinary dif-
ferential equation that determines the rate of change dw=dt of pa-
rameters w as a function of the current value of these parameters
and those of the module’s neighbors:

dw
dt

= fA(wl;w;wr):

The above equation applies as long as the parameters w are in the
domainDA characteristic to the module typeA. We assume thatDA
is an open set, and specify its boundary CA as the union of a finite
number m � 1 of nonintersecting segments CAk , k = 1; 2; : : : ;m.
The time t� at which the trajectory of module A(w) reaches a
segment CAk of the boundary of DA satisfies the expression:

lim
t!t

�

�

w(t) 2 CAk :

The replacement of module A(w) by its descendants at time t� is
described by a production:

pAk : Al(wl) < A(w) > Ar(wr) �!
Bk;1(wk;1)Bk;2(wk;2) � � �Bk;mk

(wk;mk
):

The module A(w) is called the strict predecessor and the sequence
of modules Bk;1(wk;1)Bk;2(wk;2) � � �Bk;mk

(wk;mk
) is called the

successor of this production. The index k emphasizes that different
productions can be associated with individual segments CAk of the

Domain of legal values
of the parameter vector w

Initial state of
module M2 = A(w)
at time t = tα

Possible C1 discontinuity of w(t)
resulting from the application
of a production to the context

Trajectory reaches boundary
segment C2 − a production
determines the descendants
and their state at time t = tβ

Trajectory w(t)

D

t = tβ

t = tα
t

C3

C2

C1

Figure 4: A hypothetical trajectory of module M2 in its parameter
space

boundary CA. The initial value of parameters assigned to a module
Bk;j(wk;j) upon its creation is determined by a function hAk;j
which takes as its arguments the values of the parameters wl, w, and
wr at the time immediately preceding production application:

wk;j = lim
t!t

�

�

hAk;j (wl(t);w(t);wr(t)):

The vector wk;j must belong to the domain DBk;j . (A stronger
condition is needed to insure that the number of productions applied
in any finite interval [t; t+ ∆t] will be finite.)

In summary, a differential L-system is defined by the initial string
of modules �0 and the specification of each module type under
consideration. The specification of a module type A consists of
four components:

< DA; CA; fA; PA >;

where:

� the open set DA is the domain of legal parameter values of
modules of type A,

� the set CA = CA1 [: : : [CAm is the boundary of DA,
consisting of nonintersecting segments CA1 ; : : : ; CAm ,

� the function fA specifies a system of differential equations
that describe the continuous behavior of modules of type A
in their domain of legal parameter values DA,

� the set of productions PA = fpA1 ; : : : ; pAmg captures the
discrete behavior of modules of type A.

A production pAk 2 PA is applied when the parameters of a module
M of type A reach segment CAk of the boundary CA. At this time
module M disappears, and zero, one, or more descendant modules
are created. The functions hAk;j embedded in productions pAk
determine the initial values of parameters in the successor modules.

Fr(2)1

Fl(2)1

Fr(2)1

Fl(2)1

Fr(2)2 Fl(2)2

Fr(1)

Figure 5: Initial steps in the construction of a dragon curve

4 EXAMPLES OF dL-SYSTEMS

We will illustrate the notion of a dL-system using two sample models
suitable for animating the development of the dragon curve and the
filamentous alga Anabaena catenula.

4.1 A dL-system model of the dragon curve

In the discrete case, consecutive iterations of the dragon curve
(described, for example, in [27, Chapter 1]) can be obtained by
the following parametric L-system:

! : �� Fr(1)

p1 : Fr(s)! �Fr(s
p

2
2) + +Fl(s

p
2

2)�
p2 : Fl(s)! +Fr(s

p
2

2)��Fl(s
p

2
2)+

Assuming that symbols + and � represent turns of �45�, this L-
system encodes a Koch construction [18, Chapter 6] that repeatedly
substitutes sides of an isosceles right-angled triangle for its hy-
potenuse (Figure 5). Subscripts l and r indicate that the triangle is
formed respectively on the left or right side of the oriented predeces-
sor segment. A corresponding dL-system that generates the dragon
curve through the continuous progression of shapes indicated in
Figure 6 is given below:

initial string: �� Fr(1; 1)
Fr(x; s) :

if x < s solve dx
dt

=
s
T
; ds
dt

= 0

if x = s produce �Fr(0; s
p

2
2) + Fh(s; s) + Fl(0; s

p
2

2)�
Fl(x; s) :

if x < s solve dx
dt

=
s
T
; ds
dt

= 0

if x = s produce +Fr(0; s
p

2
2)� Fh(s; s)� Fl(0; s

p
2

2)+

Fh(x; s) :
if x > 0 solve dx

dt
= � s

T
; ds
dt

= 0
if x = 0 produce "

The operation of this model starts with the replacement of the initial
module Fr(1; 1) with the string:

�Fr(0;
p

2
2

) + Fh(1; 1) + Fl(0;

p
2

2
)�;

which has the same turtle interpretation: a line segment of unit
length 1. Next, the horizontal line segment represented by module
Fh decreases in length with the speed dx

dt
= � 1

T
, while the diagonal

segments represented by modules Fr and Fl elongate with the speed
dx
dt

=

p
2

2
1
T

. The constant T determines the lifetime of the modules:
after timeT , the moduleFh reaches zero length and is removed from

1The turtle interprets the first parameter as the segment length, and ignores the
second parameter.

the string (replaced by the empty string "), while both modules Fr
and Fl reach their maximum length of

p
2

2 and are replaced by their
respective successors. These successors subsequently follow the
same developmental pattern.

It is not accidental that the predecessor and the successor of the
productions for Fr(x; s) and Fl(x; s) have identical geometric in-
terpretations. Since productions are assumed to be applied instan-
taneously, any change of the model’s geometry introduced by a
production would appear as a discontinuity in the animation. In
general, correctly specified productions satisfy continuity criteria
[27, Chapter 6], which means that they conserve physical entities
such as shape, mass, and velocity of modules.

4.2 A dL-system model of Anabaena catenula

The continuously developing dragon curve has been captured by
a context-free dL-system, in which all productions and equations
depend only on the strict predecessor module. A simple example
of a context-sensitive model inspired by the development of the
blue-green alga Anabaena catenula [3, 20, 27] is given below.

Anabaena forms a nonbranching filament consisting of two classes
of cells: vegetative cells and heterocysts. A vegetative cell usually
divides into two descendant vegetative cells. However, in some
cases a vegetative cell differentiates into a heterocyst. The spacing
between heterocysts is relatively constant, in spite of the continuing
growth of the filament. Mathematical models explain this phe-
nomenon using a biologically motivated hypothesis that the distri-
bution of heterocysts is regulated by nitrogen compounds produced
by the heterocysts, diffusing from cell to cell along the filament, and
decaying in the vegetative cells. If the compound concentration in a
vegetative cell falls below a specific level, this cell differentiates into
a heterocyst (additional factors are captured by more sophisticated
models). A model operating in continuous time according to this
description can be captured by the following dL-system:

initial string: Fh(xmax; cmax)Fv(xmax; cmax)Fh(xmax; cmax)

F (xl; cl) < Fv(x; c) > F (xr; cr) :
if x < xmax & c > cmin

solve dx
dt

= rx; dc
dt

= D � (cl + cr � 2c)� �c

if x = xmax & c > cmin

produce Fv(kxmax; c)Fv((1 � k)xmax; c)

if c = cmin

produce Fh(x; c)
Fh(x; c):

solve dx
dt

= rx(xmax � x); dc
dt

= rc(cmax � c)

Vegetative cells Fv and heterocysts Fh are characterized by their
length x and concentration of nitrogen compounds c. The differ-
ential equations for the vegetative cell Fv indicate that while the
cell length x is below the maximum value xmax and the compound
concentration c is above the threshold cmin , the cell elongates ex-
ponentially according to the equation dx

dt
= rx, and the compound

concentration changes according to the equation:

dc

dt
= D � (cl + cr � 2c)� �c:

The first term in this equation describes diffusion of the compounds
through the cell walls. Following Fick’s law [5, page 404], the

Figure 6: Development of the dragon curve simulated using a dL-
system, recorded in time intervals ∆t =

1
8T . Top left: Superim-

posed stages 0 � 8, top right: stages 8 � 16, bottom row: stages
16 � 24 and 24� 32.

rate of diffusion is proportional to the differences of compound
concentrations, cr � c and cl � c, between the neighbor cells and
the cell under consideration. The term �c describes exponential
decay of the compounds in the cell.

In addition to the differential equations, two productions describe
the behavior of a vegetative cell. If the cell reaches maximum
length xmax while the concentration c is still above the threshold
cmin, the cell divides into two vegetative cells of length kxmax and
(1 � k)xmax, with the compound concentration c inherited from
their parent cell. Otherwise, if the concentration c drops down to
the threshold cmin, the cell differentiates into a heterocyst. Both
productions satisfy the continuity criteria by conserving total cell
length and concentration of nitrogen compounds.

The last line of the model specifies the behavior of the heterocysts.
Their length and compound concentration converge exponentially to
the limit values of xmax and cmax. The heterocysts do not undergo
any further transformations.

Simulation results obtained using the above model are shown in
Figure 7. The cells in the filament are represented as horizontal
line segments with the colors indicating the concentration of nitro-
gen compounds. Consecutive developmental stages are drawn one
under another. An approximately equal spacing between the hete-
rocysts (shown in white) is maintained for any horizontal section,
as postulated during model formulation.

Note that for incorrectly chosen constants in the model, the spacing
between heterocysts may be distorted; for example, groups of ad-
jacent vegetative cells may almost simultaneously differentiate into
heterocysts.

5 EVALUATION OF dL-SYSTEMS

Although Figures 6 and 7 were obtained using dL-systems, we have
not yet discussed the techniques needed to evaluate them. This
term denotes the calculation of the sequence of strings �(0) =

�0, �(∆t) = �1; : : : ; �(n∆t) = �n representing the states of
the modeled structure at the desired intervals ∆t. We address the
problem of dL-system evaluation in the framework of the combined
discrete/continuous paradigm for system simulation introduced by
Fahrland [6] and presented in a tutorial manner by Kreutzer [15].

Figure 7: Diagrammatic representation of the development of An-
abaena catenula, simulated using a dL-system with the constants
set to the following values: xmax = 1, cmax = 255, cmin = 5,
D = � = 0:03, r = 1:01, k = 0:37, rx = 0:1, rc = 0:15. The
development was recorded from tmin = 200 to tmax = 575 at
the intervals ∆t = 1. Developmental stages are shown as horizon-
tal lines with the colors indicating the concentration c of nitrogen
compounds. Dark brown represents cmin; white represents cmax.

According to this paradigm, the evaluation can be viewed as a
dynamic process governed by a scheduler: a part of the simulation
program that monitors the state of the model, advances time, and
dispatches the activities to be performed. In the absence of discrete
events (productions), the scheduler repeatedly advances time by the
time slice ∆t. During each slice, the differential equations associated
with the modules are integrated numerically (using an integration
technique appropriate for the equations in hand), thus advancing
the state of the structure from �(t) to �(t + ∆t). If the scheduler
detects that a discrete event should occur (i.e., a production should
be applied) at time t0 within the interval [t; t + ∆t), this interval is
divided into two subintervals [t; t0) and [t0; t+∆t). The differential
equations are integrated in the interval [t; t0) and yield parameter
values for the production application at time t0. The production
determines the initial values for the differential equations associated
with the newly created modules; these equations are integrated in
the remaining interval [t0; t+ ∆t). Each of the intervals [t; t0) and
[t0; t+∆t) is subdivided further if more discrete events occur during
[t; t+ ∆t).
Plant structures generated using dL-systems may consist of large
numbers (thousands) of modules. If many modules are replaced at
different times t0 during the interval [t; t+∆t), the global advance-
ment of time may require an excessive subdivision of this interval,
leading to a slow evaluation of the model. This problem can be
solved by detecting and processing events the interval [t; t + ∆t)
individually for each module. The increase of simulation speed is
obtained at the expense of accuracy, since the state of the context of
a module replaced at time t0 2 (t; t+∆t)must be approximated, for
example, by its state at time t. No accuracy is lost in the context-free
case.

In the above description we assumed that the scheduler is capa-
ble of detecting each instant t0 at which a discrete event occurs.
If the differential equations are sufficiently simple, we can solve
them analytically and determine time t0 explicitly. In general, we
need numerical techniques for special event location in piecewise-
continuous ordinary differential equations, as described by Sham-
pine et. al. [29], and Barzel [2, Appendix C].

x01

x02

x03

xmax

0.0 1.0 2.0

x

t

6

- xmin

xmax

T

x

t

∆x

6

-

6

?

Figure 8: Examples of sigmoidal growth functions. a) A family of
logistic functions plotted using r = 3:0 for different initial values
x0. b) A cubic function G∆x;T .

6 GROWTH FUNCTIONS

Growth functions describe continuous processes such as the ex-
pansion of individual cells, elongation of internodes, and gradual
increase of branching angles over time. For example, the differ-
ential equations included in the dL-system for the dragon curve
(Section 4.1) describe linear elongation of segments Fr and Fl, and
linear decrease in length of segments Fh. The dL-system model of
Anabaena (Section 4.2) assumes exponential elongation of cells.

In higher plants, the growth functions are often of sigmoidal (S-
shaped) type, which means that they initially increase in value
slowly, then accelerate, and eventually level off at or near the maxi-
mum value. A popular example of a sigmoidal function is Velhurst’s
logistic function (c.f. [5, page 212]), defined by the equation:

dx

dt
= r

�
1 � x

xmax

�
x

with a properly chosen initial value x0 (Figure 8a). Specifically, x0

must be greater than zero, which means that neither the initial length
nor the initial growth rate of a module described by the logistic
function will be equal to zero. In order to obtain a continuous
progression of forms, it is often convenient to use a growth function
that has zero growth rates at both ends of an interval T within which
its value increases from xmin (possibly zero) to xmax. These
requirements can be satisfied, for example, by a cubic function of
time. Using the Hermite form of curve specification [8, page 484],
we obtain:

x(t) = �2
∆x
T 3

t3
+ 3

∆x
T 2

t2
+ xmin;

where ∆x = xmax � xmin and t 2 [0; T]. The equivalent differ-
ential equation is:

dx

dt
= �6

∆x
T 3

t2
+ 6

∆x
T 2

t = 6
∆x
T 2

�
1 � t

T

�
t

with the initial condition x0 = xmin. In order to extend this curve
to infinity (Figure 8b), we define:

dx

dt
= G∆x;T (t) =

�
6 ∆x
T 2

�
1� t

T

�
t for t 2 [0; T]

0 for t 2 (T;+1):

Although the explicit dependence of the function G on time is
questionable from the biological point of view (a plant module does
not have a means for measuring time directly), parametric cubic
functions constitute a well understood computer graphics tool [8,
Chapter 11.2] and can be conveniently used to approximate the
observed changes of parameter values over time.

Figure 9: Development of a compound leaf simulated using a dL-
system. Parameter values are: n0 = 4, x0 = 1:0, xth = 2:0, k =

0:5, ra = 2:0, xamax = 3:0, ri = 1:0, ximax = 3:0, s0 = 0:05,
rs = 2:0, smax = 6:0, �0 = 2:0, r� = 1:0, �max = 60:0, and
∆t = 0:01. The stages shown represent frames 50, 215, 300, 400,
500, 600, and 900 of an animated sequence.

7 MODELING OF HIGHER PLANTS

In this section we present sample applications of dL-systems to the
animation of the development of higher plants.

7.1 Pinnate Leaf

A pinnate leaf provides a simple example of a monopodial branch-
ing structure. Monopodial branching occurs when the apex of the
main axis produces a succession of nodes bearing organs — leaves
or flowers — which are separated by internodes. In the case of
pinnate leaves with the leaflets occurring in pairs (termed opposite
arrangement), the essence of this process can be captured by the
L-system production [27, page 71]:

Fa �! Fi[+@L][�@L]Fa;

where Fa denotes the apex, Fi — an internode, and @L — a
leaflet. The dL-system model given below extends this L-system
with growth functions that control the expansion of all components
and gradually increase branching angles over time.

initial string: Fa(x0; n0)

Fa(x; n) :
if x < xth

solve dx
dt

= ra
�

1� x
xamax

�
x; dn

dt
= 0

if x = xth & n > 0
produce Fi(kx)[+(�0)@L(s0)][�(�0)@L(s0)]

Fa((1� k)x; n� 1)
if x = xth & n = 0

produce Fi(x)@L(s0)

Fi(x) : solve dx
dt

= ri
�

1 � x
ximax

�
x

L(s) : solve ds
dt

= rs
�

1 � s
smax

�
s

�(�) : solve d�
dt

= r�
�

1 � �
�max

�
�

The apex Fa has two parameters x and n which indicate its current
length and the remaining number of internodes to be produced. The
apex elongates according to the logistic function with parameters
r (controlling growth rate) and xamax (controlling the asymptotic
apex length). Upon reaching the threshold length xth, the apex
produces a pair of leaflets @L and subdivides into an internode
Fi of length kx and a shorter apex of length (1 � k)x. Once the
predefined number n0 of leaf pairs have been created, the apex

Figure 10: Development of the herbaceous plant Campanula ra-
punculoides. The snapshots show every 25th frame of a computer
animation, starting with frame 175.

transforms itself into an internode and produces the terminal leaflet.
The length of internodes, the size of leaflets, and the magnitude of
the branching angles increase according to the logistic functions.
Snapshots of the leaf development simulated by the above model
are shown in Figure 9.

7.2 Campanula rapunculoides

The inflorescence of Campanula rapunculoides (creeping bell-
flower) has a monopodial branching structure similar to that of a
pinnate leaf; consequently, it is modeled by a similar dL-system:

initial string: Fa(x0; n0)

Fa(x; n) :
if x < xth

solve dx
dt

= v; dn
dt

= 0
if x = xth & n > 0

produce Fi(kx)[+(�0)@K]Fa((1� k)x; n � 1)
if x = xth & n = 0

produce Fi(x)@K

Fi(x) : solve dx
dt

= G∆x;T1 (t)

+(�) : solve d�
dt

= G∆�;T2 (t)

The apex is assumed to grow at a constant speed. Cubic growth
functions describe the elongation of internodes and the gradual in-
crease of branching angles. The combination of the linear growth
of the apex with the cubic growth of the internodes results in first-
order continuity of the entire plant height (except when apex Fa is
transformed into internode Fi and terminal flower @K).

S

(2,1)

(1,1)

(1,2) (1,3)

(1,4)

(2,4)

(3,4)

(4,4)

(4,3)(4,2)

(4,1)

(3,1)

(3,2)

(2,2)

(3,3)

(2,3)

Figure 11: A Bézier patch de-
fined by a branching structure

Figure 10 presents a se-
quence of snapshots from
an animation of Campan-
ula’s development. It was
obtained using the above
dL-system augmented with
rules that govern the de-
velopment of flowers @K

from a bud to an open
flower to a fruit. The
petals and sepals have been
modeled as Bézier patches,
specified by control points
placed at the ends of simple
branching structures (Fig-
ure 11). Each structure is

Figure 12: Development of a single flower of Campanula rapuncu-
loides

attached to the remainder of the model at point S. The lengths of the
line segments and the magnitudes of the branching angles have been
controlled by cubic growth functions, yielding the developmental
sequence shown in Figure 12. When the flower transforms into a
fruit, productions instantaneously remove the petals from the model
(it is assumed that the time over which a petal falls off is negligible
compared to the time slice used for the animation of development).
Manipulation of Bézier patches using L-systems has been described
in detail by Hanan [13].

7.3 Lychnis coronaria

The inflorescence of Lychnis coronaria (rose campion) is an ex-
ample of a sympodial branching structure, characterized by large
branches that carry the main thrust of development. As presented
in [27, page 82] and [28], the apex of the main axis turns into a
flower shortly after the initiation of a pair of lateral branches. Their
apices turn into flowers as well, and second-order branches take
over. The lateral branches originating at a common node develop
at the same rate, but the development of one side is delayed with
respect to the other. This process repeats recursively, as indicated
by the following L-system:

! : A7

p1 : A7 �! F [A0][A4]F@K

p2 : Ai �! Ai+1 0 � i < 7

Production p1 shows that, at their creation time, the lateral apices
have different statesA0 andA4. Consequently, the first apex requires
eight derivation steps to produce flower @K and initiate a new pair
of branches, while the second requires only four steps.

A corresponding dL-system using cubic growth functions to de-
scribe the elongation of internodes F is given below:

initial string: A(�max)

A(�) :
if � < �max solve d�

dt
= 1

if � = �max produce F (0)[A(0)][A
�
�max

2

�
]F (0)@K

F (x) : solve dx
dt

= G∆x;T (t)

For simplicity, we have omitted leaves and symbols controlling the
relative orientation of branches in space. The operation of the model

Figure 13: Development of Lychnis coronaria. The snapshots show
every 25th frame of a computer animation, starting with frame 150.

is governed by apices A characterized by their age � and assumed
to have negligible size. Upon reaching the maximum age �max, an
apex splits into two internodes F , creates two lateral apices A with
different initial age values 0 and �max

2 , and initiates flower @K. In
order to satisfy continuity criteria, the initial length of internodes is
assumed to be zero.

Figure 13 shows selected snapshots from an animation of the devel-
opment of Lychnis obtained using an extension of this dL-system.
As in Campanula, the individual flowers have been modeled using
Bézier patches controlled by the dL-system.

7.4 Hieracium umbellatum

The compound leaf and the inflorescences of Campanula and Ly-
chnis have been captured by context-free dL-systems, assuming
no flow of information between coexisting modules. Janssen and
Lindenmayer [14] (see also [27, Chapter 3] and [28]) showed that
context-free models are too weak to capture the whole spectrum
of developmental sequences in plants. For example, the basipetal
flowering sequence observed in many compound inflorescences re-
quires the use of one or more signals that propagate through the
developing structure and control the opening of buds. Such a se-
quence is characterized by the first flower opening at the top of the
main axis and the flowering zone progressing downward towards
the base of the plant.

Figure 14: A model
of Hieracium umbel-
latum.

Figure 14 shows a synthetic image
of Hieracium umbellatum, a sam-
ple composite plant with a basipetal
flowering sequence. Following
model I postulated by Janssen and
Lindenmayer, we assume that the
opening of buds is controlled by a
hormone generated at some point
of time near the base of the plant
and transported towards the apices.
The hormone propagates faster in
the main axis than in the lateral
branches. As a result, it first reaches
the bud of the main axis, then
those of the lateral branches in the
basipetal sequence. The growth
of the main axis and of the lateral

branches stops when the hormone attains their respective termi-
nal buds. In addition, the hormone penetrating a node stops the

Figure 15: Development of Hieracium umbellatum. The stages
shown represent frames 170, 265, 360, 400, 470, 496, and 520 of
an animated sequence.

development of a leaf originating at this node. Snapshots from
a diagrammatic animated developmental sequence illustrating this
process are shown in Figure 15.

h

x

Figure 16: A concep-
tual model of the apex.

The complete listing of the dL-
system capturing the develop-
ment of Hieracium is too long
to be included in this paper,
but a specification of the activ-
ities of the main apex provides a
good illustration of the context-
sensitive control mechanism in-
volved. We conceptualize this
apex as a growing and periodi-
cally dividing tube of length x,
which may be penetrated by the
hormone to a height h � x (Fig-
ure 16). The apex can assume

three states: Fa0 (not yet reached by the hormone), Fa1 (being
penetrated by the hormone), and Fa2 (completely filled with the
hormone). The apical behavior is captured by the following rules:

Fl(xl; hl) < Fa0(x) :
if xl > hl & x < xth

solve dx
dt

= G(x)

if x = xth
produce Fi0(kx)[Fa0(0)]Fa0((1� k)x)

if xl = hl & x < xth
produce Fa1(x; 0)

Fa1(x; h):
if x > h & x < xth

solve dx
dt

= G(x); dh
dt

= v

if kx > h & x = xth
produce Fi1(kx; h)[Fa0(0)]Fa0((1� k)x)

if x > h � kx & x = xth
produce Fi2(kx; kx)Fa1((1� k)x; h � kx)

if x = h

produce Fa2(x; x)

The first three rules model the apex without the hormone. If the pre-
ceding internodeFl is not yet completely penetrated by the hormone
(xl > hl) and the length x of the apex is below the threshold value
xth, the apex elongates according to the growth function G(x).
Upon reaching the threshold length (x = xth), the apex Fa0 subdi-
vides, producing an internode Fi0 and a lateral apex Fa0. Finally,
once the hormone penetrates the entire internode Fl (as indicated by
the condition xl = hl), it flows into the apex, which then changes
its state to Fa1.

Figure 17: Development of a single flower head of Hieracium
umbellatum

The continuous rule for Fa1 describes the growth of the apex with
rate G(x) and the propagation of the hormone with constant speed
v. The next two productions capture the alternate cases of the apex
subdivision, with the hormone level h below or above the level kx at
which the new internode splits from the apex. The last production is
applied when the hormone reaches the tip of the apex, and changes
its state to the flowering state Fa2.

The complete model of Hieracium umbellatum contains additional
rules that describe the elongation of internodes, the propagation of
the hormone within and between the internodes, and the develop-
ment of flower heads. The heads undergo the sequence of trans-
formations illustrated in Figure 17. The bracts (green parts of the
flower head) have been represented using Bézier patches controlled
by the dL-system, while the petals have been formed as extend-
ing chains of filled rectangles, with the angles between consecutive
rectangles controlled by cubic growth functions. This technique
allowed us to represent each petal with a relatively modest number
of polygons (10).

8 CONCLUSIONS

We have introduced differential L-systems as a combined dis-
crete/continuous model suitable for computer simulation and an-
imation of plant development. Continuous aspects of module be-
havior are described by ordinary differential equations, and discon-
tinuous qualitative changes are captured by productions. The link
between L-systems and dL-systems makes it possible to use existing
discrete developmental models as a starting point for constructing
dL-systems suitable for animation.

Differential L-systems have a wide spectrum of prospective appli-
cations, ranging from modest projects, such as the diagrammatic
animation of developmental mechanisms employed by plants, to
ambitious ones, such as the realistic animation of the growth of ex-
tinct plants. On the conceptual level, dL-systems expand piecewise-
continuous differential equations with a formal specification of dis-
crete changes to system configuration. The resulting formalism
makes it possible to model developing branching structures with
a theoretically unlimited number of modules. From a different
perspective, dL-systems can be considered as the continuous-time
extension of parametric L-systems.

The following problems still require solutions:

� Combined differential-algebraic specification of contin-
uous processes. In some cases it is convenient to describe
continuous aspects of model behavior using explicit func-
tions of time instead of differential equations. For example,
the expression of the cubic growth function using the differ-
ential equation presented in Section 6 is somewhat artificial.
In order to accommodate explicit function specifications, the
definition of dL-systems should be extended to comprehend
differential-algebraic equations.

� Incorporation of stochastic rules. Differential L-systems
have been formulated in deterministic terms. Stochastic rules
should be incorporated to capture the specimen-to-specimen
variations in modeled plants, as has been done for L-systems.

� Development of the simulation software. The simulations
discussed in this paper were carried out using a programming
language based on parametric L-systems [13, 26]. In this
environment, the user must explicitly specify the formulae
for numerically solving the differential equations included
in the models (the forward Euler method was used in all
cases). From the user’s perspective, it would be preferable to
incorporate a differential equation solver into the simulator,
and specify the models directly in terms of dL-systems.

� Improved realism of dL-system models. We have not ad-
dressed many practical problems related to the construction
of realistic models, such as the avoidance of intersections
between modules, the improved modeling of growing plant
organs (petals, leaves, and fruits), and the simulation of wilt-
ing.

The simulation and visualization of natural phenomena has the in-
triguing charm of blurring the line dividing the synthesis of images
from the re-creation of nature. The animation of plant development
adds a new phenomenon to this (un)real world.

Acknowledgements

We would like to thank Jim Hanan for his essential work on the plant
modeling software cpfg used in the simulations, and for valuable ref-
erences and comments. At different points in time, Gavin Miller,
Karl Sims and Alvy Ray Smith revealed to us the techniques used
in their developmental animations. M. Raju and C. C. Chinnappa
explained the details of the development of Lychnis coronaria and
Hieracium umbellatum. We also gained many insights from illumi-
nating discussions with Bill Remphrey, John Reinitz, Stan Letovsky,
and Keith Ferguson. This research was sponsored by an operating
grant and a graduate scholarship from the Natural Sciences and En-
gineering Research Council of Canada, and a grant from the U.S.
Air Force Office of Scientific Research.

References

[1] M. Aono and T. L. Kunii. Botanical tree image genera-
tion. IEEE Computer Graphics and Applications, 4(5):10–34,
1984.

[2] R. Barzel. Physically-based modeling for computer graphics
— a structured approach. Academic Press, Boston, 1992.

[3] C. G. de Koster and A. Lindenmayer. Discrete and continuous
models for heterocyst differentiation in growing filaments of
blue-green bacteria. Acta Biotheoretica, 36:249–273, 1987.

[4] P. de Reffye, C. Edelin, J. Françon, M. Jaeger, and C. Puech.
Plant models faithful to botanical structure and development.
Proceedings of SIGGRAPH ’88 (Atlanta, Georgia, August 1–
5, 1988), in Computer Graphics 22, 4 (August 1988), pages
151–158, ACM SIGGRAPH, New York, 1988.

[5] L. Edelstein-Keshet. Mathematical models in biology. Ran-
dom House, New York, 1988.

[6] D. A. Fahrland. Combined discrete event – continuous systems
simulation. Simulation, 14(2):61–72, 1970.

[7] K. W. Fleischer and A. H. Barr. A simulation testbed for
the study of multicellular development: Multiple mechanisms
of morphogenesis. To appear in Artificial Life III, Addison-
Wesley, Redwood City, 1993.

[8] J. D. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer
graphics: Principles and practice. Addison-Wesley, Reading,
1990.

[9] F. D. Fracchia, P. Prusinkiewicz, and M. J. M. de Boer. An-
imation of the development of multicellular structures. In
N. Magnenat-Thalmann and D. Thalmann, editors, Computer
Animation ’90, pages 3–18, Tokyo, 1990. Springer-Verlag.

[10] J. Françon. Sur la modélisation de l’architecture et du dévelop-
pement des végétaux. In C. Edelin, editor, L’Arbre. Biologie
et Développement. Naturalia Monspeliensia, 1991. No

¯
hors

série.

[11] N. Greene. Organic architecture. SIGGRAPH Video Review
38, segment 16, ACM SIGGRAPH, New York, 1988.

[12] N. Greene. Voxel space automata: Modeling with stochas-
tic growth processes in voxel space. Proceedings of SIG-
GRAPH ’89 (Boston, Mass., July 31–August 4, 1989), in
Computer Graphics 23, 4 (August 1989), pages 175–184,
ACM SIGGRAPH, New York, 1989.

[13] J. S. Hanan. Parametric L-systems and their application to the
modelling and visualization of plants. PhD thesis, University
of Regina, June 1992.

[14] J. M. Janssen and A. Lindenmayer. Models for the control
of branch positions and flowering sequences of capitula in
Mycelis muralis (L.) Dumont (Compositae). New Phytologist,
105:191–220, 1987.

[15] W. Kreutzer. System simulation: Programming styles and
languages. Addison-Wesley, Sydney, 1986.

[16] A. Lindenmayer. Mathematical models for cellular interaction
in development, Parts I and II. Journal of Theoretical Biology,
18:280–315, 1968.

[17] A. Lindenmayer and H. Jürgensen. Grammars of develop-
ment: Discrete-state models for growth, differentiation and
gene expression in modular organisms. In G. Rozenberg and
A. Salomaa, editors, Lindenmayer systems: Impacts on the-
oretical computer science, computer graphics, and develop-
mental biology, pages 3–21. Springer-Verlag, Berlin, 1992.

[18] B. B. Mandelbrot. The fractal geometry of nature. W. H.
Freeman, San Francisco, 1982.

[19] G. S. P. Miller. Natural phenomena: My first tree. Siggraph
1988 Film and Video Show.

[20] G. J. Mitchison and M. Wilcox. Rules governing cell division
in Anabaena. Nature, 239:110–111, 1972.

[21] E. Mjolsness, D. H. Sharp, and J. Reinitz. A connection-
ist model of development. Journal of Theoretical Biology,
152(4):429–454, 1991.

[22] H. Noser, D. Thalmann, and R. Turner. Animation based on
the interaction of L-systems with vector force fields. In T. L.
Kunii, editor, Visual computing – integrating computer graph-
ics with computer vision, pages 747–761. Springer-Verlag,
Tokyo, 1992.

[23] P. Prusinkiewicz. Graphical applications of L-systems. In
Proceedings of Graphics Interface ’86 — Vision Interface ’86,
pages 247–253, 1986.

[24] P. Prusinkiewicz, M. Hammel, and J. Hanan. Lychnis coro-
naria. QuickTime movie included in the Virtual Museum
CD-ROM, Apple Computer, Cupertino, 1992.

[25] P. Prusinkiewicz and J. Hanan. Visualization of botanical
structures and processes using parametric L-systems. In
D. Thalmann, editor, Scientific Visualization and Graphics
Simulation, pages 183–201. J. Wiley & Sons, Chichester,
1990.

[26] P. Prusinkiewicz and J. Hanan. L-systems: From formalism
to programming languages. In G. Rozenberg and A. Salo-
maa, editors, Lindenmayer systems: Impacts on theoretical
computer science, computer graphics, and developmental bi-
ology, pages 193–211. Springer-Verlag, Berlin, 1992.

[27] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty
of plants. Springer-Verlag, New York, 1990. With J. S. Hanan,
F. D. Fracchia, D. R. Fowler, M. J. M. de Boer, and L. Mercer.

[28] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Develop-
mental models of herbaceous plants for computer imagery
purposes. Proceedings of SIGGRAPH ’88 (Atlanta, Geor-
gia, August 1–5, 1988), in Computer Graphics 22, 4 (August
1988), pages 141–150, ACM SIGGRAPH, New York, 1988.

[29] L. F. Shampine, I. Gladwell, and R. W. Brankin. Reliable solu-
tion of special event location problems for ODEs. ACM Trans-
actions on Mathematical Software, 17, No. 1:11–25, March
1991.

[30] K. Sims. Panspermia. SIGGRAPH Video Review, ACM
SIGGRAPH, New York, 1990.

[31] A. R. Smith. Plants, fractals, and formal languages. Proceed-
ings of SIGGRAPH ’84 (Minneapolis, Minnesota, July 22–27,
1984) in Computer Graphics, 18, 3 (July 1984), pages 1–10,
ACM SIGGRAPH, New York, 1984.

