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ABSTRACT 

This paper presents a simulation-based method for the animation of the development of cellular 
layers. The neighborhood relations between the cells are determined using a simulated devel­
opmental process, expressed by the formalism of map L-systems. The cell shapes result from 
mechanical cell interactions. Two types of forces are considered: the osmotic pressure and the 
tension of cell walls. The animation consists of periods of continuous growth separated by in­
stantaneous celJ divisions. The method is illustrated using the fern gametophyte Microsorium 

linguaeforme. 

Keywords: mathematical modeling in biology, animation through simulation, visualization of 
development, map L-system, dynamic model. 

1 INTRODUCTION 

An important issue in developmental biology is the study of cell division patterns, that is, the 
spatial and temporal organization of celJ divisions in tissues. This paper presents a method for 
the visualization of the development of single-layered cellular structures, such as those found in 
moss leaves and fern gametophytes [de Boer 1989]. 

The practical motivation for this work is related to two applications. As a research tool, graphical 
simulations make it possible to study the impact of cell divisions on cell arrangement and global 
shape formation. As a visualization method, simulations provide a tool for presenting features that 
cannot be captured using time-lapse photography. For example, pseudocolor may be introduced to 
distinguish groups of cells descending from a specific ancestor or to indicate cell age. Inconspicuous 
structural elements, such as new division walls, can be emphasized. 

The underlying mathematical model consists of two components. On a topological level, the 
cell division patterns are expressed using the formalism of map £-systems. At this stage the 
neighborhood relations between cells are established, but the cell shapes remain unspecified. Next, 
cell geometry is modeled using a dynamic method that takes into account the osmotic pressure 
inside the cells and the tension of cell walls. The animation consists of periods of continuous cell 
expansion, delimited by cell divisions. The divisions are assumed to be instantaneous. 

The paper is organized as follows. Section 2 describes the simulation of cellular development on the 
topological level. After a brief survey of methods for the parallel generation of graphs with cycles, 
attention is focused on map L-systems with markers (mBPM0L-systems). Section 3 is devoted 
to specifying the geometry of cellular structures given their topology. A brief survey of previous 
methods is given, and a new method, based on the concept of dynamic modeling, is introduced. 
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The geometry of a cellular structure is viewed as a result of forces acting on cell walls. It changes in 
time as the entire structure attempts to reach an equilibrium state. Section 4 applies the method 
to model and visualize the development of a real biological structure - the gametophyte of the 
fern Microsorium linguaeforme. Problems open for future research are outlined in Section 5. 

2 MAP L-SYSTEMS 

2.1 Maps as Models of Cell Layers 

In order to simulate the development of cell structures, one needs a formalism that will capture 
the relevant aspects of the developmental process. Cellular layers are represented using a class of 
planar graphs with cycles, called maps [Tutte 1982]. According to Nakamura et al. (1986), maps 
can be characterized as follows: 

• A map is a finite set of regions. Each region is surrounded by a boundary consisting of a
finite, circular sequence of edges which meet at vertices.

• Each edge has one or two vertices associated with it.1 The edges cannot cross without
forming a vertex and there are no vertices without an associated edge.

• Every edge is a part of the boundary of a region.

• The set of edges is connected. Specifically, there are no islands within regions.

A map corresponds to a microscopic view of a cellular layer. Regions represent cells, and edges 
represent cell walls perpendicular to the plane of view. We abstract here from the internal com­
ponents of a cell. 

2.2 Rewriting Systems and Cell Layer Development 

The p�ocess of cell division can be expressed as map rewriting. This notion is an extension of string 
rewriting used in formal language theory. In general, map rewriting systems are categorized as 
sequential or parallel, and can be region-controlled or edge-controlled. Since several cells may divide 
concurrently, a parallel rewriting system is needed. The second categor.ization has to do with the 
form of rewriting rules, which may express cell subdivisions in terms of region labels or edge labels. 
Both approaches are suitable for biological modeling purposes [de Boer 1989]. We have chosen 
an edge-controlled formalism of Binary Propagating Map OL-system with markern, or mBPM0L­
·systems. It was proposed by Nakamura, Lindenmayer and Aizawa (1986) as a refinement of the
basic concept of map L-systems introduced by Lindenmayer and Rozenberg (1979). The name is
derived as follows. A map OL-system is a parallel rewriting system which operates on maps and
does not allow for interaction between regions. In other words, regions are modified irrespective
of what happens to other neighboring regions (a context-free mechanism). The system is binary
because that a region can split into at most two daughter regions. It is propagating in the sense
that the edges cannot be erased, thus regions (cells) cannot fuse or die. The markers represent a
technique for specifying the positions of inserted edges that split the regions.

1The one-vertex case occurs when an edge forms a loop.
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The choice of mBPM0L-systems as a modeling tool has two justifications. First, they are more 
powerful than other interactionless map rewriting systems described in the literature [de Boer 1989, 
de Boer 1987, Culik 1979]. In addition, markers have a biological counterpart in preprophase 
bands of microtubules, which coincide with the attachment sites for division walls formed during 
mitosis [Gunning 1981]. 

2.3 Definition and Operation of mBPMOL-systems 

An mBPM0L-system g is defined by specifying a finite alphabet of edge labels E, a starting map w

with labels from E, and a finite set of edge productions P. lo general, the edges are directed, which 
is indicated by a left or right arrow placed above the edge symbol. In some cases, the edge direction 
has no effect on the system operation. Such an edge is called neutral and no arrow is placed above 
the symbol denoting it. Each production is of the form A -> a, where the directed or neutral 
edge A E E is called the predecessor, and the string a, composed of symbols from E and special 
symbols [,], +, -, is called the successor. The sequence of symbols outside the square brackets 
specifies the edge subdivision pattern. Arrows can be placed above edge symbols to indicate 
whether the successor edges have directions consistent with, or opposite to, the predecessor edge. 
Pairs of matching brackets [ and ) delimit markers, which specify possible attachment site; for 
region-dividing walls. The markers are viewed as short branches which can be connected to form 
a complete wall. The strings inside brackets consist of two symbols. The first symbol is either + 
or -, indicating whether the marker is placed to the left or to the right of the predecessor edge. 
The second symbol is the marker label, with or without an arrow. The left arrow indicates that 
the marker is directed towards the predecessor edge, and the right arrow indicates that the marker 
is oriented away from that edge. If no arrow is present, the marker is neutral. 

For example, in the production A -> DC [- E] BF, the directed predecessor A splits into four 
edges D, C, B and F, and produces a marker E (Figure la). Successor edges D and B have the 
same direction as A, edge C has the opposite direction, and F is neutral. Marker E is placed 
to the right of A and is directed towards A. Note that this same production could be written 
as A -> FB [+ E] CD (Figure lb). As an example of a production with a neutral predecessor, 
consider A -> B[-B]x[+ B]B. lo this case the result of production application does not depend on 
the assumed direction of the predecessor edge (Figure le). 

A derivation step in an mBPM0L-system consists of two phases: 

1. Each edge in the map is replaced by successor edges and markers using the corresponding
edge production in P.

2. Each region is scanned for matching markers.

a. A -Be[- EJBF

A 

D F 
• 

b. A - FB[+E]CD

A 

F D 
I • 

Figure 1: Examples of edge productions. 

c. A-B[-B]x[+B]B

A 
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Two markers are considered matching if: 

1. they appear in the same region,

2. they have the same label, and

3. one marker is directed away from its incident edge while the other is directed towards the
edge, or both markers are neutral.

If a match is found, the markers are joined to create a new edge which will split the region. The 
search for matching markers ends with the first match found, even though other markers entering 
the same region may also form a match. From the user's perspective, the system behaves in a 
nondeterministic way since it autonomously chooses the pair of markers to be connected. The 
unused markers are discarded. 

2.4 Examples of Map L-Systems 

This section presents examples which illustrate the operation of mBPM0L-systems. 

L-systern 1

w: ABAB 

P1 : A --t B[-Al[+A]B 
p2: B --t A  

In 1-system 1, production PI creates markers responsible for region division, while production p2
introduces a delay, so that the .regions are subdivided alternately by horizontal and vertical edges. 
The resulting sequence of maps is shown in Figure 2. 

A B B B B 

B□ '� ,[[]A 

A w B B 

(ro) �\ 1 ( 

A A 

B

EE

B 
A A 

B B B 
A A 

(2) 

A 

A 

B B B B 

A A A A 
B B B B 

A A A A 

B B B B 

(3) 

Figure 2: Developmental sequence defined by L-system 1. In the first step, a distinction is made 
between the edge rewriting phase and the connection of matching markers. 

L-systern 2

w: ABAB 
PI : A --t B[-A]x[+A]B 
P2: B --t A 

7 

L-system 2 is a modified version of L-system 1. The only difference is the addition of an edge
x which separates the markers in the successor of production P1• This edge creates a Z-shaped
offset between the inserted edges A (Figure 3). Z-offsets and symmetric S-offsets (Figure 4) can
be observed in many biological structures [Luck 1988].

L-systern 3

w: A BCD 

PI : A --t o [- Ji'J s 
P2 B --t B 

p3: C --t s [- A]s 
p4: D --t C 

L-system 3 illustrates the operation of an mBPM0L-system with directed edges. Productions P1
and p3 create markers. Production p4 transforms edge D into C, so that in each derivation step 
there is a pair of edges A and C to which productions p1 and p3 apply. Production p2 indicates
that edges B do not undergo further changes.2 The resulting structure is that of a clockwise spiral
(Figure 5).

B

rn

AB x A B 

X X X 

B B B 

A x A 

(2) 

A

�

Bx
: 

X BxB 

A 
B B 

X 
X 

)( B
x 

X 

A A A 

Bx B x BX B 

(3) 

Figure 3: Developmental sequence defined by L-system 2. 

Figure 4: Offsets between four regions that result from the division of two regions sharing a 
common wall: (a) Z-offset, (b) S-offset. 

BO
C 

o -rn·, e c J�· .m.
LDB LJJJB 

A BO BC B BB 

(ro) (1) (2) (3) 

Figure 5: Developmental sequence defined by L-system 3. 

2In further L-systems such identity productions are omitted.

(4)
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3 GRAPHICAL INTERPRETATION OF MAP L-SYSTEMS 

3.1 Previous Work 

Maps are graphs or topological objects without inherent geometric properties. In order to visualize 
them, some method for assigning geometric interpretation must be applied. In the scope of this 
paper, we are interested in the representation of cellular layers. Consequently, we will use the 
biologically-motivated terms, cell and wall, instead of their mathematical counterparts, region 
and edge. 

Siero, Rozenberg and Lindenmayer (1982) proposed a method which, m the simplest case, is 
expressed by the following rules: 

• walls are represented by straight lines,

• the starting map is represented by a regular polygon, bounded by the walls specified in the
axiom,

• when a production subdivides a wall, all successor walls are of equal length, and

• the position of a wall resulting from the union of two matching markers is based on the
position of these markers.

This wall subdivision method was used to draw Figures 2, 3 and 5. However, in the biological 
context it creates cells whose shapes are seldom observed in nature. 

De Does and Lindenmayer (1983) proposed a center of gravity method which produces more 
realistic shapes. The main idea is to place each interior vertex of the map in the center of gravity 
of its neighbors. Such positioning of vertices has a sound biological justification: it minimizes 
hypothetical forces acting along cell walls [de Does 1983], thus bringing the entire structure to a 
state of minimum energy. However, if all vertices were positioned this way, the entire structure 
would collapse. In order to prevent this from happening, the vertices on the map perimeter are 
pushed outwards by a fixed distance. Unfortunately, this approach lacks biological justification 
and introduces sudden shape changes which make it unsuitable for animation purposes. 

3.2 The Dynamic Method 

Assuming the dynamic point of view, the shape of cells and thus the shape of the entire organism 
results from the action of forces. The unbalanced forces due to cell divisions cause the gradual 
modification of cell shapes until an equilibrium is reached. At this point, new cell divisions occur, 
and expansion resumes. 

The dynamic method is based on the following assumptions: 

• the modeled organism forms a single cell layer,

• the layer is represented as a two-dimensional network of masses corresponding to cell corners,
connected by springs which correspond to cell walls,

• the springs are always straight and adhere to Hooke's law,

I 

� 

9 

• the cells exert pressure on their bounding walls; the pressure on a wall is directly proportional
to the wall length and inverse proportional to the cell area,

• the pressure on a wall spreads evenly between the wall corners,

• the motion of masses is damped,

• other forces (for example, due to friction or gravity) are not considered.

The position of each vertex, and thus the shape of the layer, is computed as follows. As long as 
an equilibrium is not reached, unbalanced forces put masses in motion. The total force Fr acting 
on a vertex X is given by the formula: 

Fr= I: Pw+h
wEW 

where: 

• F;,, are forces contributed by the set W of walls w incident to X, and

• Fd = -bv is a damping force, expressed as the product of a damping factor b and vertex
velocity v.

A wall w E W contributes three forces acting on X (Figure 6). The tension F, acts along the 
wall, and its magnitude is determined by Hooke's law: 

F, = -k(l - l0)

where k is the spring constant, / is the current spring length, and 10 is the rest length. The 
remaining two forces, PL and PR, are due to the pressure exerted by the cells on the left side and 
on the right side of the wall. Each force acts in the direction perpendicular to the wall, and is 
distributed equally between its two incident vertices. The magnitude of the force PL exerted by 
the cell on the left side of the wall equals PL · /, where PL is the internal cell pressure and I is the 
wall length. A similar formula describes the force PR, The pressure is assumed to be inversely 
proportional to the celJ area: p ~ A-1• This assumption corresponds to the equation describing
osmotic pressure, p = SRT, where S is the concentration of the solute (n moles per volume 
V of the solution), R 1s the ideal gas constant, and T is the absolute temperature [Sears 1985, 
Webster 1967]. Assuming that the cell volume Vis proportional to the area A captured by the 
two-dimensional model under consideration (V = Ah), pressure can be expressed as 

Figure 6: Forces acting on a celJ corner X according to the dynamic method. 
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nRT 
p = 

Ah. 

Thus, p ~ A-1, provided that the term nRT / h is constant.

A convenient formula for calculating the area A is: 

M 

A= I� (x; - x;+1)(y, + Yi+i)/21
i=l 

where (x;, y;) are coordinates of the M vertices surrounding region A, XM+i = x 1 , and YAHi = y1 
[Bronshtein 1985]. 

The force FT acts on a mass placed at a map vertex. Newton's second law or motion applies: 

d2-x -
m-=FT 

dt2 

where i is the vertex position. Assuming that the entire structure has N vertices, we obtain a 
system of 2N differential equations: 

dv; 
m·-

• dt
di;
dt

where i = 1,2, ... ,N. The task is to find the sequence of positions i1, ... ,iN at given time 
intervals, assuming that the functions FT, and the initial values of all variables: ii°, ... , if!, and 
v1°, ... , vf!, are known. These initial values are determined as follows: 

• Coordinates of the vertices of the starting map are included in the input data for the simu­
lation.

• Positions of existing vertices are preserved through a derivation step. New vertices partition
the divided walls into segments of equal length. The initial velocities of all vertices are set
to zero.

The system of differential equations with the initial values given above represents an initial value 
problem. It can be solved numerically using the forward (explicit) Euler method [Fox 1987). To 
this end, the differential equations are rewritten using finite increments 6.v;, 6.x, and 6.t: 

A -k uxi 

where the superscripts k = 0, l, 2, ... indicate the progress of time, t 
velocity of a point i after time increment 6.t are expressed as follows: 

v/+1 = v/ + 6.v/ 
i/+1 i/ + 6.v: 

kb.l. The position and 

The iterative computation of the velocities ti/ and positions i/ is carried out for consecutive 
values of index k until all increments 6.v; and 6.x; fall below a threshold value. This indicates 
that the equilibrium state has been approximated to the desired accuracy, and a derivation step 
can be performed. A system of equations corresponding to the new map topology is created, and 

11 

the search for an equilibrium state resumes. In such a way, the animation of a developmental 
process consists of periods of continuous cell expansion, delimited by instantaneous cell divisions. 
Continuity of cell shapes during divisions is preserved by the rule which sets the initial positions 
of vertices. 

Color plate 1 illustrates the expansion of a structure generated by L-system 2. Plate la shows 
the structure immediately after the insertion of division walls. Plate I b superimposes consecutive 
wall positions, with colors changing from blue to red as time progresses. Plate le describes the 
final structure at equilibrium. A smooth progression of shapes simulating the growth process can 
be easily observed. 

4 A BIOLOGICAL EXAMPLE 

In this section we apply the described simulation method to visualize the development of the fern 
gametophyte Microsorium linguaeforme. Fern gametophytes represent the sexually reproducing 
life stage of fern plants. They show no differentiation into stem, leaf, and root, forrning a plant 
body called a thallus. The development of a thallus can be conveniently described in terms of 
two types of activities: the activity of the apical cell giving rise to cell clones called segments, 
and the development of these segments. The modeling process captures repetitive patterns of cell 
divisions, so that large cellular structures can be described using a small number of productions. 

4.1 Apical Activity 

The apical cell is the originator of the gametophyte structure. It divides repetitively, giving rise 
each time to a new apical cell and a primary (initial) segment cell. The segment cells subsequently 
develop into multicellular segments. The division wall of an apical cell is attached to the thallus 
border on one side and to a previously created division wall on the other side. Thus, the division 
walls are oriented alternatingly to the left and to the right, yielding two columns of segments 
separated by a zig-zag dividing line (Figure 7). The recursive nature of the apical activity can be 
expressed by the following cell production system: 

This notation means that the cell on the left side of the arrow sign produces two daughter cells 
separated by a wall. 

apical front 

(0) (1) (2) 

Figure 7: Apical production of segments. The labels An and AL denote apical cells producing right 
segment Sn and left segment SL, respectively. Dashed lines indicate the newly created division 
wall. The superscripts represent segment age. The internal structure of segments is not shown. 
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Ah. 
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i=l 
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4.2 Division Pattern of Segments 

In describing the structure of a segment, we distinguish between periclinal and anticlinal walls. In­
tuitively, periclinal walls are approximately parallel to the apical front of the th all us, and anticlinal 
walls are perpendicular to this front. A more formal definition is as follows: 

• In a primary segment, the apical front wall and one or more walls opposing it are periclinal
walls. The remaining walls are anticlinal walls.

• A division wall attached to the periclinal walls is an anticlinal wall, and vice-versa.

In Microsorium, a wall is never attached to a periclinal wall on one side and an anticlinal wall on 
the other side, so the above definition comprises all possible cases. 

Microscopic observations of growing Microsorium gametophytes reveal that all segments follow 
the same developmental sequence, shown diagramatically in Figure 8. The primary segment cell 
S1 is first divided by a periclinal wall into two cells, S2 and S3. Subsequently, the basal cell S3 

is divided by another periclinal wall into two "terminal" cells T which do not undergo further 
divisions. At the same time, the cell S2 lying on the thallus border is divided by an anticlinal 

wall into two cells of type S1 . Each of these cells divides in the same way as the primary cell. 
Consequently, the recursive nature of segment development can be captured by the following cell 
production system: 

In the above rules, a horizontal bar denotes a periclinal wall between cells, and a vertical bar 
denotes an anticlinal wall. 

4.3 The Development of the Entire Thallus 

The development of the Microsorium thallus is a result of concurrent divisions of the apical 
and segment cells. A single division of the apical cell corresponds to a single step in the segment 
development. A developmental sequence which combines the activity of the apex and the segments 
is shown in Figure 9. This figure also reveals offsets between neighboring walls. On the basis of 
observation, it is assumed that periclinal division walls form S-offsets in the segments on the right 
side of the apex, and Z-offsets in the segments on the left side. 
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Figure 8: Developmental sequence of a Microsorium segment. 

---------------------------------- - -- - -- - -
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4.4 Expressing the Development Using a Map L-System 

In order to capture the development of Microsorium using the formalism of map L-systems, it 
is necessary to identify all combinations of cells which may lie on both sides of a wall. Careful 
examination of these combinations yields the wall labeling scheme shown in Figure 9. Two walls 
have the same label if and only if they divide in the same way.3 The uppercase letters apply to 
right segment walls, and the corresponding lowercase letters denote symmetric walls in the left 
segments. By comparing pairs of subsequent structures, we arrive at the following map L-system. 

(0) (1) (2) 

A 

(3) 
(4) 

(5) 

Figure 9: Developmental sequence of a Microsorium gametophyte. 

3It is conceivable to formulate an algorithm which would assign labels consistent with the above rule automat­
ically. However, the labeling scheme given in Figure 9 was obtained "by hand". 
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L-system 4: Microsorium 1

w: ADxb 
/ I : a _, 'i [+ i;J 7 r1 : A _, a [- aJr 
12 : b _, � [- B] X [+ h] d T2 : B _, E [+ b] X [- H] D 
/3 : d _, f 1'3 : D _, F 

/4 : 
-

f _, g [- h] X [+ h] d 1'4 : F _, G [+ H] X [- H] D 
Is : h _, X [- f] X rs : H _, X [+ F] X 

-
-

Is : i _, C 1'5: I _, C 
/7 : C _, i [+ f]i r7 : C _, r [- F]r
Is :

-

X [+ x] X X [- x] X e _, rs: E _, 
lg : g _, X [- x] X [+ x] X rg : G _, X [+ x] X [- x] X 

The apical cell divisions result from the application of productions r 1 - 12 ( creation of a right 
segment) and 11 - r2 (creation of a left segment). The subsequent segment cell divisions proceed 
in a symmetric way in right and left segments; we describe in detail the development of a right 
segment. 
Concurrently with the insertion of wall segment B which creates segment Sn(1l, wall Don the
opposite side of the segment is transformed into F. This transformation introduces a one-step 
delay into the application of production r4 which, together with r2, is responsible for the insertion 
of the first periclinal wall H into segment S R(2) . As the derivation progresses, production r 4 inserts
subsequent periclinal walls H between pairs of anticlinal walls F. Production r3 introduces a delay 

needed to create walls F which are inserted between periclinal walls H and apical walls I, using 
productions rs and r7. Production r6 plays a role analogous to r3 - it introduces a one-step delay 
into the cycle of creating markers F at the apical front of the segment. Thus, periclinal walls H 
and anticlinal walls F are produced alternatingly, in subsequent derivation steps. The last two 
productions, rs and rg, create terminal walls x which do not undergo further changes. The first 
such wall is inserted between walls labeled D and E during derivation step 3. Wall D separates 
segment Sn(2) from s£

<1l . Wall E lies on the border of the thallus. The subsequent walls x are
inserted every second step between pairs of walls D; only production r9 is applied in these cases. 

4.5 Including Basal Segments in the Model 

L-system 4 was formulated under the assumption that all segments develop in the same way.
However, in a real organism the first two segments, situated at the thallus base, form a modified
pattern with less extensive cell divisions. The developmental sequence of a right basal segment is
shown in Figure 10. The corresponding cell production system is given below.

@iJ 
(0) (1) 

s11 T 

T 

T 

(2) (3) 

apical 
front 

T 

T 

T 

T 

(4) 
Figure 10: Developmental sequence of a basal Microsorium segment.
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The map L-system describing the development of a Microsorium gametophyte including basal 
segments has the following productions:

L-system 5: Microsorium 2

A 'a [- aJ r 
-

X [+ x] X [- x) X r, : _, rg : G _, 

r2: B _, E [+ b] X [- H] D r10 : J _, L 
-

[- iiiJ ir3 : D _, ru: K _, N 

G [+ H] X [- H] D 
-

X [- M] X r4 : F _, r12 : L _, 
rs: H _, X [+ F] X r 13 : M _, X [- L] X 

rs: I _, C r14 : N _, 0 

r1 : C _, r [- i,Jr' r 1s : 0 _, x[- tJ i 
-

X [-x] X rs: E _, 

Only productions describing the development of the right side of the thallus are given. Their 
predecessors are denoted by uppercase letters. The corresponding lowercase productions, which 
complete the L-system definition, can be obtained by switching the "case" of letters and the orien­
tation of markers. The wall direction remains unchanged. For example, the right-side production 

1'x: P-> A [- b] C

corresponds to the left-side production 

Ix : P-> 'a [+ B] C 

For more examples, see L-system 4. 

A simulated developmental sequence generated by L-system 5 using the dynamic method to de­
termine cell shape is given in Plate 2. Different colors are used to indicate the apical cell, the 
alternating "regular" segments, and the basal segments. A comparison of a developmental stage 
farther from the equilibrium (Plate 3) with a photograph of Microsorium linguaeforme (Plate 4) 
shows good correspondence between the model and reality with respect to structure topology, the 
relative sizes and shapes of cells, and the overall shape of the thallus. 

5 CONCLUSIONS 

This paper presented a modeling method for single-layered cellular structures, suitable for the 
animation of developmental processes. The topology is captured using mBPM0L-systems. The 
geometry results from a dynamic model that takes into account internal cell pressure and wall 
tension. The method is illustrated using a model of the gametophyte of Microsorittm linguaeforme.

There are many possible refinements and extensions. 

• The assumption that cell divisions occur after the structure has reached an equilibrium
simplifies the computation, but is not essential to the modeling method. Cell divisions could
also occur while the vertices are still in motion. In that case, velocities of existing vertices,
as well as their positions, should be preserved.
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• The described method is based on the assumption that cell divisions throw the structure out
of an equilibrium state, and the subsequent process of reaching a new equilibrium describes
the structure expansion. A physiological justification of this approach is an open problem.

• The assumption that wall strengths and solute concentrations defining osmotic pressure are
the same for all walls and cells, and remain constant in time, may have to be relaxed for
some structures.

• The method also assumes that cell states are not affected by the states of neighboring cells
- the model is context-free. In some cases, cell interaction plays an important role in the 
control of development. To model this effect, a context-sensitive extension of map L-systems
is needed.

• During the cleavage stage of embryo development, the structure consists of a single layer
of cells which covers the surface of an imaginary sphere, called the blastula [Balinsky 1970].
By extending the method presented in this paper to a surface of a sphere, it was possible
to model the development of worm and snail embryos [de Boer 1988]. For example, Plate
5 shows a ray-traced image of the embryo of Patella vu/gala, modeled according to data
in [van den Biggelaar 1977]. Nevertheless, both planar and spherical models operate on 
surfaces. Many cellular tissues and organs require truly three-dimensional models. A study 
of three-dimensional map systems, termed cellworks, was initiated in [Lindenmayer 1984].
Application of this theory to graphical simulation of development remains an open problem.
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Plate 2: Simulated developmental sequence of 
Microsorium linguaeforme. 

Plate 4: Photograph of Microsorium linguae­
forme at magnification 60x. 

Plate 5: Ray-traced image of a modeled em­
bryo of the snail Patel la vulgata. 
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