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A new divisive algorithm for multidimensional data clustering is suggested. Based on the minimization 
of the sum-of-squared-errors, the proposed method produces much smaller quantization errors than 

the median-cut and mean-split algorithms. It is also ohserved that the solutions obtained from our 

algorithm are close to the local optimal ones derived by the k-means iterative procedure. 
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1. INTRODUCTION

A clustering procedure can be viewed as one of finding groupings in a set of 
events by extremizing some criterion function_ In a variety of problems, such as 
unsupervised learning [3], multivariate data analysis [6], and digital image 
processing [5, 7], the collection of data can be represented as a set of points in a 
multidimensional vector space. One of the most widely used criterion functions 
for clustering analysis is the sum of squared Euclidean distances measured from 
the cluster centers. The main task in clustering analysis is then to seek the 
groupings that minimize the sum-of-squared-errors. 

Consider N input data points s1 , s2, ... , SN in a m-dimensional vector space 
n. The objective is to find K (K « N) cluster centers r1 , r2 , • • •  , FK such that the 
average sum-of-squared-errors [3] defined by 

E = _.!_ i: II si - R(s,) 11
2 

N i=l 

(1) 

is minimum, where R (si) E j Fi, r2 , • • •  , FK } C n is the cluster center closest to 
Si, namely, 

R(sJ = arg Min 11 s; - Fj 11
2

• (2) 
lsjsK 
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In general, the N input data points are not necessarily distinct. Let 
Xi , x2 , ••• , .i" denote then distinct points (n < N), and p(.i1

), p(i2), ••• , p(in) 
the corresponding occurrence frequencies. Equations (1) and (2) can be rewritten 
as 

n 

E = L p(x;) 11 x; - .R(i;) 112,
l-1 

.R(i;) = arg Min II i; - ;:i 11
2

• 
ISJSK 

(3) 

(4) 

The boundaries of the K clusters defined by Eq. (4) form a m-dimensional 
Voronoi diagram in Q. 

It is known that the problem of finding the global minimum solution for Eqs. 
(3) and (4) is NP-complete [8]. For this reason, a number of approximate
clustering techniques [3, 7, 9, 13) have been developed. These techniques can be
divided into two categories: iterative optimization and heuristic methods. The
algorithm most frequently used for seeking a local minimum solution is the
k-means iterative procedure [9]. However, the converging time required by the
iterative schemes can easily become unmanageable, particularly for large cluster­
ing problems.

Instead of finding a local minimum solution, the heuristic approach is designed 
to reduce the computational complexity, and at the same time produce an 
acceptable solution. There are two basic heuristic methods: the agglomerative 
and the divisive techniques. In this paper we are concerned only with the latter. 
A divisive approach is a procedure that partitions the vector space sequentially 
into K disjoint subregions. For simplicity, the partition hyperplanes are assumed 
to be perpendicular to one of the coordinate axes. This means that each of the 
subregions is actually a hyperbox. The centroids of the K-resulting hyperboxes 
are chosen to be the cluster centers. 

A well-known method in the divisive approach is the divide-and-conquer 
strategy [l]. In this method, a problem of N points in a m-dimensional space is 
reduced to first recursively solve two problems each with N /2 points in a 
m-dimensional space, and then recursively solve a problem of N points in a
(m - 1)-dimensional space. Based on this technique, several divisive procedures
such as the median-cut [7] and mean-split [13) algorithms have been proposed.
It should be pointed out here that there is a drawback in using a recursive
strategy for our clustering problem (see Sections 2.1 and 2.2).

This paper presents a new divisive algorithm for clustering. The salient features 
of the proposed method are 

- it is not recursive;
- the partition strategy is based on the minimization of the sum-of-squared-

errors.

The experimental results show that our clustering algorithm always produces
much smaller errors than other divisive methods. More importantly, the sum-of­
squared-errors produced by our method is very close to those obtained from the 
k-means algorithm.
ACM Transactions on Mathematical Software, Vol. 14, No. 2, June 1988. 
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In Section 2, the k-means iterative procedure and two divisive algorithms­
the median-cut (k-d tree) and the mean-split algorithms-are reviewed and 

analyzed. Our algorithm is introduced in Section 3. A comparison of the perform­

ance of different algorithms is presented in Section 4. 

2. REVIEW OF OTHER METHODS

2.1 Median-Cut Algorithm (k-d Tree) 

Heckbert [7] proposed the median-cut algorithm to find the representative colors 
for image quantization. In this method, the 3-dimensional color space is recur­
sively subdivided into rectangular hyperboxes. To subdivide any hyperbox, the 
orientation of the partition plane is chosen to be perpendicular to the coordinate 
axis with the largest color spread, and passes through the median point of the 
projected color distribution along this axis. As a result of this operation, each 
final hyperbox contains nearly the same number of data points. The centroids of 
these hyperboxes are chosen to be the representative colors (cluster centers). 

Using the spatial-storage scheme (i.e., storing input data point-by-point), the 
complexity of this algorithm is O(m log KN log N) for time and O(mN) for 

space. 
The theoretical basis of the median-cut algorithm can be traced to the k-d tree 

method proposed by Bentley et al. [2, 4]. The k-d tree algorithm was originally 
designed to minimize the expected cost of searching for the nearest neighboring 
records in information retrieval. For this purpose, it is desirable to assign 

approximately an equal number of records to all terminal nodes in the search 
tree. However, such a rationale may not be applicable to the clustering problem 
of image quantization. There is no sound justification to require that each of the 

resulting hyperboxes should contain a nearly equal number of data points, while 
ignoring entirely how these points are distributed. Furthermore, adopting the 

recursive strategy to partition the space has an inherent drawback, because in 
such a method the decision of whether or not to subdivide a hyperbox is based 
solely on its position in the k-d tree, without any regard to the contents of the 

hyperbox. Consequently, a hyperbox with a large quantization error in one subtree 
may not be chosen for further partition, whereas a hyperbox containing only one 
point (with high occurrence frequency) in another subtree may be chosen to be 

subdivided instead. Although this problem can be alleviated by reassigning the 
partition to the largest hyperbox among the remaining terminal nodes in the 
current tree, such an ad hoc remedy is inconsistent with the recursive nature of 
the algorithm. 

2.2 The Mean-Split Algorithm 

Using the divide-and-conquer strategy for both spatial and quota divisions, Wu 

and Witten [13] suggested the mean-split algorithm. Its main features are 
summarized below: 

- Hyperplanes are used for partition as in the median-cut algorithm.

- The partition point is chosen to be the mean rather than the median of the
projected distribution with the largest spread.

ACM Transactions on Mathematical Software, Vol. 14, No. 2, June 1988. 
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- Let L be the number of clusters originally assigned to a hyperbox. When the
hyperbox is split into two smaller ones, one assigns L, clusters to the smaller
hyperbox i according to the following formula:

[ n, V, ]
L; = L q +

(1 - q) 
V V , n1 + n2 1 + 2 

(i = 1, 2), (5) 

where n, is the number of data points and V, the volume containing all the 
data points in hyperbox i. The heuristic parameter q is restricted to the range 
0.5::; q ::=; 0.7. 

- A minimum hyperbox size is prespecified. Any hyperbox smaller than this size
will not be further subdivided.

Indeed, some of the drawbacks in the Heckbert algorithm are partially removed
by this technique. However, there remain a number of problems associated with 
this method. To partition a hyperbox by a plane passing through the mean 
instead of the median does not necessarily lead to a lower quantization error. 
The inherent drawback of the recursive strategy still exists. For instance, when 
attempting to partition a hyperbox smaller than the prespecified size, one may 
still have to reassign the partition to the largest hyperbox as in the median-cut 
algorithm. Moreover, there is also a lack of theoretical justification for the choice 
of a number of parameters involved in this algorithm. In fact, a better criterion 
than Eq. (5) seems to be 

(i = 1, 2) (6) 

where o} is the variance of hyperbox i. The need to introduce a parameter such 
as q is also avoided. 

The main advantage of the mean-split algorithm is that it has a lower 
computational cost - O(mN log K) time and O(mN) space for the spatial­
storage scheme-mostly because it is simpler to compute the mean than the 
median. 

2.3 The K-Means Algorithm 

The k-means iterative procedure has received considerable attention in clustering 
analysis. This algorithm can be summarized as follows. First select K initial 
cluster centers. Then, the K clusters are formed by associating each data point 
with its closest cluster center. The centroids of these K clusters become the new 
cluster centers. The above procedure is repeated until the new cluster centers are 
the same as the previous ones. Although the k-means algorithm has been widely 
used in many applications, it has been shown only recently [10] that it converges 
to a local minimum solution in a finite number of iterations if a quadratic metric 
is used. 

With the spatial-storage scheme, the time complexity of this algorithm is 
proportional to mTNK. The number of iterations T necessary for the algorithm 
to converge depends on the distribution of the data points, the number of clusters 
required, the size of the space, and the choice of initial cluster centers. For a 
large clustering problem, the computation can be very costly. For example, it 

ACM Transactions on Mathematical Software, Vol. 14, No. 2, June 1988. 

Algorithm for Multidimensional Data Clustering 161 

Table II. The Sum-of-Squared-Error Produced by the k-Means Algorithm Based 

on Different Initial Cluster Centers 

Problems K Median-Cut Mean-Split Our method 

m = 2 8 7.6692 7.2185 7.2645 

N= 256 X 256 64 0.8622 0.8579 0.7840 

m = 3 8 24.4701 25.3078 22.6893 

N= 256 X 256 64 4.5508 4.8853 4.5399 

m = 4 8 33.0417 33.4320 32.8519 

N = 256 X 256 64 8.0713 8.2480 8.1022 

Table Ill. Difference of Quantization Error Between the k-Means Algorithm 

and Other Methods 

Problems K Median-Cut Mean-Split Our method 

m = 2 8 4.6389 3.2243 0.3897 

N= 256 X 256 64 0.2677 0.1416 0.0084 

m = 3 8 3.6087 2.2066 0.5118 

N= 256 X 256 64 2.9142 1.1978 0.1858 

m=4 8 5.6765 2.4881 0.6927 

N = 256 x 256 64 4.9269 4.6007 0.4379 

5. CONCLUSIONS

We have presented an effective and efficient divisive algorithm for multivariate 
data clustering. This algorithm is designed to minimize the average sum-of­
squared-errors. 

We have successfully applied the proposed algorithm to color image quantiza­
tion [11]. Our method is able to produce quantized images of higher quality than 
the other divisive methods. We have also shown that our results are very close 
to the local optimal solutions obtained from the k-means iterative procedure. 

Our approach is applicable to a variety of applications such as pattern recog­
nition, information retrieval, and intelligent information systems. 
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Table I. Comparison of the Sum-of-Squared-Errors 

Problems K Median-Cut Mean-Split Our method 

m=2 8 12.3081 10.4428 7.6542 
N= 256 X 256 64 1.1299 0.9995 0.7924 

m = 3 8 28.0788 27.5144 23.2011 
N = 256 X 256 64 7.4650 6.0831 4.7257 

m = 4 8 38.7182 35.9201 33.5446 
N = 256 X 256 64 12.9982 12.8487 8.5401 

rence frequencies of the input points in a m-dimensional array. The size of the 
array depends on the spread of each component axis. This scheme is also 
consistent with the geometric positions of the hyperboxes. Thus, to partition a 
hyperbox, the search is limited to a small local region only. Another advantage 
of the frequency-storage scheme is that the computational time is independent 
of the number of input data points. 

If the dimension is large, we should reduce the number of data points in the 
vector space before applying the clustering operations. Since the number of data 
points in the vector space is usually much larger than the number of clusters 
required, such a compression would not significantly increase the errors, but it 
would greatly simplify the computation. For example, in color image quantization, 
using 5 bits (instead of 8 bits) per color component has no noticeable impact on 
the image quality. However, the size of the RGB color space is reduced from 256 
X 256 X 256 to 32 X 32 X 32. The computational complexity of our clustering
algorithm is O(mN1) for storage space and O(mKN1) for time, where N1 is the
number of data points in the compressed space. 

4. PERFORMANCE OF DIFFERENT CLUSTERING ALGORITHMS

In order to evaluate the proposed method, we compare it with the median-cut, 
the mean-split, and the k-means algorithms. In our experiments, we chose three 
collections of data (with different dimensions m = 2, 3, 4) from a color image 
database. For efficiency, we adopted the compressed frequency-storage scheme. 

The objective of the first group of experiments is to compare the quantization 
errors produced by the different divisive algorithms. Each set of data is quantized 
into 8 and 64 clusters, respectively. The total sum-of-squared-error (computed 
from Eq. (3)) for each case is listed in Table I. 

Our results indicate that the mean -split algorithm performs better than the 
median-cut algorithm. However, in all the cases we studied, our method produces 
much smaller errors than both the median-cut and mean-split algorithms. 

The second group of experiments is designed to see how much improvement 
can be achieved by the k-means iterative procedure. The quantization errors 
produced by applying the k-means algorithm with the starting cluster centers 
derived from different algorithms are given in Table II. 

The differences in the quantization errors between Table I and Table II are 
shown in Table III. It can be seen that our solutions are quite close to the local 
optimal solutions obtained from the k-means algorithm. However, this is not the 
case for the other two algorithms. 
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may take more than twenty hours on a VAX 780 computer to produce 256 clusters 
for a full-color image (13]. 

3. THE PROPOSED CLUSTERING ALGORITHM

There are two fundamental issues in the design of a divisive clustering algorithm. 
At each step of the partition, one must first decide which hyperbox should be 
partitioned and at the same time choose an appropriate hyperplane to subdivide 
the hyperbox. In our algorithm, both decisions are made based on the minimi­
zation of the sum-of-squared-errors. 

How to choose the hyperbox for further partition.Let Q be the hyperbox that 
contains all the input data points, p(i) the occurrence frequency of i, and �,En
p(i) = 1. Given a hyperbox Q1 � Q, the centroid (mean) µ1 and the variance a}
are defined by 

•. � p(i) -
µ1 = .(.J --x, 

xEn, W1 

2 
- � II - - - 11

2 P (i
) 

<Y/ - _t.J X µ1 
W 

, 
xEfl1 l 

where W1 = l:,En, p(i) � 1 is the weight of the hyperbox f21.

(7) 

(8) 

The process of mapping all the points within a hyperbox onto a representative 
point is called quantization. In this paper the quantization error is measured by 
the sum-of-squared-errors. It is easy to see that using the centroid of a hyperbox 
as its representative point will produce the smallest quantization error. 

The quantization error attributed to a hyperbox f21 is determined by its weighted
variance a'[:

a-r = W1<Yr = L Iii - ;;,111 2 p(i). 
Xen, 

(9) 

In order to reduce the total quantization error, at each step of the subdivision 
the hyperbox with the highest weighted variance is partitioned. That is, the 
hyperbox with the largest quantization error is chosen to be further subdivided. 

How to choose the partition hyperplane. Suppose the hyperbox f21 is split into 
two smaller hyperboxes Q11 and Q12 by a hyperplane r perpendicular to one of 
the coordinate axes. The quantization error is given by the weighted sum of 
variances: 

E(r) = W11<Yr 1 + W12<Yr2 = L Iii- ii,11ll 2p(i) + L Iii -ii,d 2p(i), (10) 
.ren, 1 .ren,

2 

where Wli, µ1;, and <Yf; are the weight, mean, and variance of the ith hyperbox
(i = 1, 2). The optimal partition hyperplane r opt is defined as the one that
minimizes the quantization error: 

I'opt = arg Min E(r), (11) 

where { r l is the set of all possible hyperplanes perpendicular to the coordinate 
axes. 
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In practice, to find the optimal partition hyperplane defined by Eq. (11) is a very time-consuming task. One way to simplify the computation is to consider the projected distributions. Let µ be the mean and CT2 the variance of a 1-dimensional distribution. Let tbe a cut-point which splits the distribution into two intervals. The optimal cut­point topt is defined as the one that maximizes the reduction of variances: 

topt = arg Max [CT2 - (W1 CTI(t) + W2CT�(t))], (12) 
t 

where w; and CTf(t) are the weight and variance of the ith interval (i = 1, 2). It can be easily verified that the reduction of expected variance can be calculated by the simple formula: 
CT2 

- [W1 CTi(t) + W2 0"Ht)) = Wi [µ - µ1(t)) 2

, W2 
(13) 

where µ1 ( t) is the mean of the first interval. Furthermore, it has been proved in [12) that the optimal cut-point is given by 
[W1 2] topt = arg Max - (µ - µ1 (t)) ,

(µ+lower)/2:St:S(µ+upper)/2 W2 
(14) 

where the symbols lower and upper specify the boundaries of the distribution. Based on Eq. (14), the optimal cut-point and the reduction of expected variance can be computed at the same time. Consequently, only half of the range needs to be searched. Therefore, in our algorithm the partition hyperplane can be chosen in the following way. Given a hyperbox, compute m 1-dimensional distributions by projecting all points within the hyperbox onto each of the coordinate axes. For each projected distribution, compute the optimal cut-point and the corresponding reduction of expected variance from Eq. (14). We choose the partition hyperplane perpendicular to the axis along which the reduction of expected variance is the largest among all projected distributions. The partition hyperplane passes through the optimal cut-point of this axis. 
How to form clusters. The above process of partition is repeated until the required number of clusters is generated. The cluster centers are chosen to be the centroids of the resulting hyperboxes. The clusters are formed by mapping each data point onto its closest cluster. center. The local search technique [7) provides an efficient way to perform this mapping operation. The proposed algorithm is summarized below: 

(1) Choose the hyperbox with the largest weighted variance (see Eq. (9)) forfurther partition.
(2) Project all data points in the hyperbox onto each of the m coordinate axes.For each of the m projected distributions, calculate the optimal cut-point andthe reduction of expected variance from Eq. (14).
(3) Partition this hyperbox by the hyperplane perpendicular to the axis alongwhich the reduction of expected variance is the largest. This hyperplaneintersects this axis at the optimal cut-point.
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(a) (b) 

Fig. 1. Two different partition methods (K = 4): (a) the median-cut algorithm; (b) the proposed 
algorithm. 

(4) Compute the weighted variance for each of the two smaller hyperboxes.
(5) Repeat steps (1) to (4) until the number of the hyperboxes reaches therequired number of clusters.
(6) Calculate the centroids of the resulting hyperboxes, which form the desiredcluster centers.
(7) Map each data point to its closest cluster center.

The basic idea behind our algorithm is to adaptively assign more clusters tothe regions with high quantization errors such that the total quantization error is reduced. As a result, in contrast to the k-d tree method, different hyperboxes may contain quite different numbers of data points, but the contribution of quantization error from each hyperbox is nearly the same. The difference in partition strategy between the proposed algorithm and the median-cut algorithm can be illustrated by a 2-dimensional example. In Figure 1, the sequence of partitions is labelled 1, 2, and 3. It is clearly demon­strated by this example that our method is able to appropriately assign cluster centers to the significant peaks of the distribution, whereas the median -cut algorithm fails to do so. In the implementation of the clustering algorithms, two storage schemes may be used: spatial-storage and frequency-storage. In the spatial-storage scheme, the 
N input points are stored in a 2-dimensional array containing m X N elements. The main drawback of such a scheme is the ineffective use of storage space, since the same input points are stored individually. In order to require the statistical information of a nonterminal hyperbox in the tree, the whole array must be searched. On the other hand, the frequency-storage scheme provides the occur-
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(4) Compute the weighted variance for each of the two smaller hyperboxes.
(5) Repeat steps (1) to (4) until the number of the hyperboxes reaches therequired number of clusters.
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Table I. Comparison of the Sum-of-Squared-Errors 

Problems K Median-Cut Mean-Split Our method 

m=2 8 12.3081 10.4428 7.6542 
N= 256 X 256 64 1.1299 0.9995 0.7924 

m = 3 8 28.0788 27.5144 23.2011 
N = 256 X 256 64 7.4650 6.0831 4.7257 

m = 4 8 38.7182 35.9201 33.5446 
N = 256 X 256 64 12.9982 12.8487 8.5401 

rence frequencies of the input points in a m-dimensional array. The size of the 
array depends on the spread of each component axis. This scheme is also 
consistent with the geometric positions of the hyperboxes. Thus, to partition a 
hyperbox, the search is limited to a small local region only. Another advantage 
of the frequency-storage scheme is that the computational time is independent 
of the number of input data points. 

If the dimension is large, we should reduce the number of data points in the 
vector space before applying the clustering operations. Since the number of data 
points in the vector space is usually much larger than the number of clusters 
required, such a compression would not significantly increase the errors, but it 
would greatly simplify the computation. For example, in color image quantization, 
using 5 bits (instead of 8 bits) per color component has no noticeable impact on 
the image quality. However, the size of the RGB color space is reduced from 256 
X 256 X 256 to 32 X 32 X 32. The computational complexity of our clustering
algorithm is O(mN1) for storage space and O(mKN1) for time, where N1 is the
number of data points in the compressed space. 

4. PERFORMANCE OF DIFFERENT CLUSTERING ALGORITHMS

In order to evaluate the proposed method, we compare it with the median-cut, 
the mean-split, and the k-means algorithms. In our experiments, we chose three 
collections of data (with different dimensions m = 2, 3, 4) from a color image 
database. For efficiency, we adopted the compressed frequency-storage scheme. 

The objective of the first group of experiments is to compare the quantization 
errors produced by the different divisive algorithms. Each set of data is quantized 
into 8 and 64 clusters, respectively. The total sum-of-squared-error (computed 
from Eq. (3)) for each case is listed in Table I. 

Our results indicate that the mean -split algorithm performs better than the 
median-cut algorithm. However, in all the cases we studied, our method produces 
much smaller errors than both the median-cut and mean-split algorithms. 

The second group of experiments is designed to see how much improvement 
can be achieved by the k-means iterative procedure. The quantization errors 
produced by applying the k-means algorithm with the starting cluster centers 
derived from different algorithms are given in Table II. 

The differences in the quantization errors between Table I and Table II are 
shown in Table III. It can be seen that our solutions are quite close to the local 
optimal solutions obtained from the k-means algorithm. However, this is not the 
case for the other two algorithms. 
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may take more than twenty hours on a VAX 780 computer to produce 256 clusters 
for a full-color image (13]. 

3. THE PROPOSED CLUSTERING ALGORITHM

There are two fundamental issues in the design of a divisive clustering algorithm. 
At each step of the partition, one must first decide which hyperbox should be 
partitioned and at the same time choose an appropriate hyperplane to subdivide 
the hyperbox. In our algorithm, both decisions are made based on the minimi­
zation of the sum-of-squared-errors. 

How to choose the hyperbox for further partition.Let Q be the hyperbox that 
contains all the input data points, p(i) the occurrence frequency of i, and �,En
p(i) = 1. Given a hyperbox Q1 � Q, the centroid (mean) µ1 and the variance a}
are defined by 

•. � p(i) -
µ1 = .(.J --x, 

xEn, W1 

2 
- � II - - - 11

2 P (i
) 

<Y/ - _t.J X µ1 
W 

, 
xEfl1 l 

where W1 = l:,En, p(i) � 1 is the weight of the hyperbox f21.

(7) 

(8) 

The process of mapping all the points within a hyperbox onto a representative 
point is called quantization. In this paper the quantization error is measured by 
the sum-of-squared-errors. It is easy to see that using the centroid of a hyperbox 
as its representative point will produce the smallest quantization error. 

The quantization error attributed to a hyperbox f21 is determined by its weighted
variance a'[:

a-r = W1<Yr = L Iii - ;;,111 2 p(i). 
Xen, 

(9) 

In order to reduce the total quantization error, at each step of the subdivision 
the hyperbox with the highest weighted variance is partitioned. That is, the 
hyperbox with the largest quantization error is chosen to be further subdivided. 

How to choose the partition hyperplane. Suppose the hyperbox f21 is split into 
two smaller hyperboxes Q11 and Q12 by a hyperplane r perpendicular to one of 
the coordinate axes. The quantization error is given by the weighted sum of 
variances: 

E(r) = W11<Yr 1 + W12<Yr2 = L Iii- ii,11ll 2p(i) + L Iii -ii,d 2p(i), (10) 
.ren, 1 .ren,

2 

where Wli, µ1;, and <Yf; are the weight, mean, and variance of the ith hyperbox
(i = 1, 2). The optimal partition hyperplane r opt is defined as the one that
minimizes the quantization error: 

I'opt = arg Min E(r), (11) 

where { r l is the set of all possible hyperplanes perpendicular to the coordinate 
axes. 
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- Let L be the number of clusters originally assigned to a hyperbox. When the
hyperbox is split into two smaller ones, one assigns L, clusters to the smaller
hyperbox i according to the following formula:

[ n, V, ]
L; = L q +

(1 - q) 
V V , n1 + n2 1 + 2 

(i = 1, 2), (5) 

where n, is the number of data points and V, the volume containing all the 
data points in hyperbox i. The heuristic parameter q is restricted to the range 
0.5::; q ::=; 0.7. 

- A minimum hyperbox size is prespecified. Any hyperbox smaller than this size
will not be further subdivided.

Indeed, some of the drawbacks in the Heckbert algorithm are partially removed
by this technique. However, there remain a number of problems associated with 
this method. To partition a hyperbox by a plane passing through the mean 
instead of the median does not necessarily lead to a lower quantization error. 
The inherent drawback of the recursive strategy still exists. For instance, when 
attempting to partition a hyperbox smaller than the prespecified size, one may 
still have to reassign the partition to the largest hyperbox as in the median-cut 
algorithm. Moreover, there is also a lack of theoretical justification for the choice 
of a number of parameters involved in this algorithm. In fact, a better criterion 
than Eq. (5) seems to be 

(i = 1, 2) (6) 

where o} is the variance of hyperbox i. The need to introduce a parameter such 
as q is also avoided. 

The main advantage of the mean-split algorithm is that it has a lower 
computational cost - O(mN log K) time and O(mN) space for the spatial­
storage scheme-mostly because it is simpler to compute the mean than the 
median. 

2.3 The K-Means Algorithm 

The k-means iterative procedure has received considerable attention in clustering 
analysis. This algorithm can be summarized as follows. First select K initial 
cluster centers. Then, the K clusters are formed by associating each data point 
with its closest cluster center. The centroids of these K clusters become the new 
cluster centers. The above procedure is repeated until the new cluster centers are 
the same as the previous ones. Although the k-means algorithm has been widely 
used in many applications, it has been shown only recently [10] that it converges 
to a local minimum solution in a finite number of iterations if a quadratic metric 
is used. 

With the spatial-storage scheme, the time complexity of this algorithm is 
proportional to mTNK. The number of iterations T necessary for the algorithm 
to converge depends on the distribution of the data points, the number of clusters 
required, the size of the space, and the choice of initial cluster centers. For a 
large clustering problem, the computation can be very costly. For example, it 
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Table II. The Sum-of-Squared-Error Produced by the k-Means Algorithm Based 

on Different Initial Cluster Centers 

Problems K Median-Cut Mean-Split Our method 

m = 2 8 7.6692 7.2185 7.2645 

N= 256 X 256 64 0.8622 0.8579 0.7840 

m = 3 8 24.4701 25.3078 22.6893 

N= 256 X 256 64 4.5508 4.8853 4.5399 

m = 4 8 33.0417 33.4320 32.8519 

N = 256 X 256 64 8.0713 8.2480 8.1022 

Table Ill. Difference of Quantization Error Between the k-Means Algorithm 

and Other Methods 

Problems K Median-Cut Mean-Split Our method 

m = 2 8 4.6389 3.2243 0.3897 

N= 256 X 256 64 0.2677 0.1416 0.0084 

m = 3 8 3.6087 2.2066 0.5118 

N= 256 X 256 64 2.9142 1.1978 0.1858 

m=4 8 5.6765 2.4881 0.6927 

N = 256 x 256 64 4.9269 4.6007 0.4379 

5. CONCLUSIONS

We have presented an effective and efficient divisive algorithm for multivariate 
data clustering. This algorithm is designed to minimize the average sum-of­
squared-errors. 

We have successfully applied the proposed algorithm to color image quantiza­
tion [11]. Our method is able to produce quantized images of higher quality than 
the other divisive methods. We have also shown that our results are very close 
to the local optimal solutions obtained from the k-means iterative procedure. 

Our approach is applicable to a variety of applications such as pattern recog­
nition, information retrieval, and intelligent information systems. 
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In Section 2, the k-means iterative procedure and two divisive algorithms­
the median-cut (k-d tree) and the mean-split algorithms-are reviewed and 

analyzed. Our algorithm is introduced in Section 3. A comparison of the perform­

ance of different algorithms is presented in Section 4. 

2. REVIEW OF OTHER METHODS

2.1 Median-Cut Algorithm (k-d Tree) 

Heckbert [7] proposed the median-cut algorithm to find the representative colors 
for image quantization. In this method, the 3-dimensional color space is recur­
sively subdivided into rectangular hyperboxes. To subdivide any hyperbox, the 
orientation of the partition plane is chosen to be perpendicular to the coordinate 
axis with the largest color spread, and passes through the median point of the 
projected color distribution along this axis. As a result of this operation, each 
final hyperbox contains nearly the same number of data points. The centroids of 
these hyperboxes are chosen to be the representative colors (cluster centers). 

Using the spatial-storage scheme (i.e., storing input data point-by-point), the 
complexity of this algorithm is O(m log KN log N) for time and O(mN) for 

space. 
The theoretical basis of the median-cut algorithm can be traced to the k-d tree 

method proposed by Bentley et al. [2, 4]. The k-d tree algorithm was originally 
designed to minimize the expected cost of searching for the nearest neighboring 
records in information retrieval. For this purpose, it is desirable to assign 

approximately an equal number of records to all terminal nodes in the search 
tree. However, such a rationale may not be applicable to the clustering problem 
of image quantization. There is no sound justification to require that each of the 

resulting hyperboxes should contain a nearly equal number of data points, while 
ignoring entirely how these points are distributed. Furthermore, adopting the 

recursive strategy to partition the space has an inherent drawback, because in 
such a method the decision of whether or not to subdivide a hyperbox is based 
solely on its position in the k-d tree, without any regard to the contents of the 

hyperbox. Consequently, a hyperbox with a large quantization error in one subtree 
may not be chosen for further partition, whereas a hyperbox containing only one 
point (with high occurrence frequency) in another subtree may be chosen to be 

subdivided instead. Although this problem can be alleviated by reassigning the 
partition to the largest hyperbox among the remaining terminal nodes in the 
current tree, such an ad hoc remedy is inconsistent with the recursive nature of 
the algorithm. 

2.2 The Mean-Split Algorithm 

Using the divide-and-conquer strategy for both spatial and quota divisions, Wu 

and Witten [13] suggested the mean-split algorithm. Its main features are 
summarized below: 

- Hyperplanes are used for partition as in the median-cut algorithm.

- The partition point is chosen to be the mean rather than the median of the
projected distribution with the largest spread.
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