
Algorithms for Inferring Context-Sensitive
L-systems

Ian McQuillan1, Jason Bernard1, and Przemyslaw Prusinkiewicz2

1 Department of Computer Science, University of Saskatchewan
Saskatoon, SK, Canada

mcquillan@cs.usask.ca, jason.bernard@usask.ca
2 Department of Computer Science, University of Calgary

Calgary, AB, Canada
pwp@ucalgary.ca

Abstract. Lindenmayer systems (L-systems) are parallel string rewrit-
ing systems (grammars). By attaching a graphical interpretation to the
symbols in the derived strings, they can be applied to create simulations
of temporal processes, and have been especially successful in the mod-
eling of plants. With the objective of automatically inferring L-system
models in mind, here we study the inductive inference problem: the in-
ference of models from observed strings. Exact algorithms are given for
inferring L-systems that can generate input strings for both determin-
istic context-free and deterministic context-sensitive L-systems. The al-
gorithms run in polynomial time assuming a fixed number of alphabet
symbols and fixed context size. Furthermore, if a specific matrix calcu-
lated from the input words is invertible, then a context-sensitive L-system
can be automatically created (if it exists) in polynomial time without as-
suming any fixed parameters.

1 Introduction

Lindenmayer systems (L-systems) are formal grammars that repeatedly rewrite
strings. By definition, L-system rules are applied to each letter of a string in
parallel to produce a new string, and the process is repeated on the new string.
L-systems can be deterministic or non-deterministic, context-free or context-
sensitive, and parameterized or non-parameterized. Theoretical properties of L-
systems have been reviewed in [1,2].

By attaching a graphical interpretation to the symbols, L-systems can gen-
erate geometric objects (models). This is typically done via turtle interpretation
wherein the turtle has a state consisting of its position and orientation, and
specific symbols of the L-system provide instructions for moving, drawing, and
turning in 2D [3] and 3D [2]. L-systems with turtle interpretation have been
especially successful in the modelling of plants [2,4,5].

There has been relatively less work on methods for inferring L-systems. There
are certain useful techniques for manually inferring models from images and real
plants by experts [5], but existing approaches to automatically infer models from

2 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

data have limitations; see survey [6]. One could imagine automatically inferring
models from sequences of images over time, and this has been attempted in a
preliminary fashion [7]. Acquiring such images digitally is now quite practical,
from cameras in fields taking pictures periodically, to more complicated camera
and sensor setups used in greenhouses, which can create point clouds represen-
tations of the plants [8]. Inference of models would be a useful step towards
digitally characterizing plants, understanding the differences between them, and
even breeding or designing new (real) plants from models. An intermediate step
is to infer L-system models from strings that describe the plant structure. That
is, given a sequence of strings produced by an unknown L-system, can the L-
system itself be inferred? This problem is known as inductive inference. In [9], an
algorithm was provided that used letter occurrence arithmetic and matrix inver-
sion to infer a deterministic context-free L-system (D0L-system) from an initial
sequence of strings. A related technique was implemented in [10], which infers
D0L-systems for alphabets with at most two symbols, while calling the problem
“immensely complicated” for alphabets of larger size. Inference of D0L-systems
from branching structures was investigated in [11]. There has also been some in-
vestigation on inference where the given strings are non-consecutive [6,9,11,12].
In [13], an algorithm is given that infers hierarchical structure from a string by
replacing repeated phrases with D0L-system rules.

In this paper, we review and extend selected algorithms for inductive infer-
ence of L-systems, and analyze their time complexity. Fixed-parameter-tractable
algorithms are those that run in polynomial time if one assumes that a param-
eter is fixed [14]. We propose a fixed-parameter-tractable algorithm that can
always infer a deterministic context-sensitive (or context-free) L-system from se-
quential data, if such a system exists. This algorithm runs in polynomial time for
context-free systems, assuming the alphabet is of fixed size. For context-sensitive
systems, it runs in polynomial time assuming that the context size is also fixed
(ie. there are constants k and l such that each L-system rule only depends on
at most k symbols of left context and l symbols of right context). Furthermore,
a speedup to this algorithm is described by using letter occurrence arithmetic
(similar to [9] for context-free systems). In particular, if a matrix defined using
a generalization of the Parikh map from letters to subwords calculated on the
input words is invertible, then a context-sensitive L-system can be inferred in
polynomial time without fixing any parameters.

2 Preliminaries

This section provides definitions of the terms and symbols used throughout the
paper.

The set of integers (positive integers, non-negative integers) is denoted by Z
(respectively N, N0). Given a vector v, let v(i) be the ith component of v. If M
is a matrix, let M∗,j be the column vector for the jth column of M . If X is a
finite set, then |X| is the number of elements in X.

Methods for Inferring L-systems 3

An alphabet is a finite set of symbols. If V is an alphabet, then V ∗ is the set
of all strings (or words) using letters from V . A language L is any subset of V ∗.
The length of a word w is denoted by |w|, and for any letter a ∈ V , |w|a is the
number of occurrences of a’s in w. Also, V i = {w | w ∈ V ∗, |w| = i} and V ≤i =
{w | w ∈ V ∗, |w| ≤ i}. For a language L, alph(L) = {a ∈ V | w ∈ L, |w|a > 0}.
Given a fixed ordering of the letters of V , V = {a1, . . . , ak}, the Parikh map of
w, ψ(w), is the vector (|w|a1 , . . . , |w|ak

). If w ∈ V ∗, a subword of w is any y such
that w = xyz, x, z ∈ V ∗. If w = yz, then y is a prefix of w and z is a suffix of w.
If 1 ≤ i ≤ j ≤ |w|, then w[i, j] is the substring between positions i and j of w.

A context-free L-system (0L-system) is one in which productions are applied
to symbols regardless of their context within the string. The 0L-system is denoted
by G = (V, ω, P), where V is an alphabet, ω ∈ V ∗ is the axiom, and P ⊆ V ×V ∗

is a finite set of productions. A production (a, x) ∈ P is denoted by a → x.
The letter a is referred to as the production predecessor, and the word x as
its successor. We assume that for each predecessor a ∈ V there is at least one
production a → x in P . The system 0L-system G is said to be deterministic
(D0L-system) if for each a ∈ V there is exactly one such production. Given a
word µ = a1 . . . am ∈ V ∗ , we write µ ⇒ ν and say that µ directly derives ν
if ν = x1 · · ·xm, where ai → xi ∈ P for all 1 ≤ i ≤ m. The (not necessarily
direct) derivation ⇒∗ is the reflexive and transitive closure of ⇒ (the result of
applying ⇒ zero, one, or more times). The language generated by a 0L-system
G is L(G) = {w | ω ⇒∗ w}. The developmental sequence of length n ∈ N0 is the
sequence of words (w1, w2, . . . , wn), such that ω = w1 ⇒ w2 · · · ⇒ wn. We call
wn the nth word generated by G.

In contrast to 0L-systems, the production chosen for each symbol in a context-
sensitive L-system may depend on the surrounding symbols. Given k, l ∈ N0

such that k + l > 0, a deterministic (context-sensitive) (k, l)-system is a tuple
G = (V, ω, P), where V and ω are the alphabet and axiom, respectively, and
P is a finite set of productions of the form u < a > v → x. We assume that
a ∈ V , u, v, x ∈ V ∗, |u| ≤ k, and |v| ≤ l. The letter a is called the strict
predecessor, and the words u and v are the left and right context, respectively.
If several context-sensitive productions could potentially be applied to the same
symbol due to differently sized contexts, we assume that the production with the
longest applicable left context, and then the longest applicable right context, will
be chosen. In a deterministic (k, l)-system there is thus exactly one production
that can be applied to any letter in any given context. If µ = a1 . . . am ∈ V ∗,
we write µ ⇒ ν if ν = x1 · · ·xm and for any i = 1, . . . ,m, the production
ui < ai > vi → xi belongs to P , the left context ui is the longest suffix of
a1 · · · ai−1, and the right context vi is the longest prefix of ai+1ai+2 · · · am among
all the productions in P with the strict predecessor ai.

3 Inferring L-Systems

In this section we study the problem of inferring an L-system from an initial
sequence of words assumed to have been generated by it. We begin with the

4 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

simplest case, the inference of D0L-systems, and use the resulting algorithms in
the more complex case of context-sensitive L-systems.

3.1 Deterministic Context-free L-Systems

We define the following problem:

D0L Inductive inference problem: Given alphabet V = {a1, . . . , am}
and a sequence of n words over V , % = (w1, . . . , wn), n > 1, determine a
D0L-system G that generates % as the developmental sequence of length
n.

We say that G is compatible with % if the developmental sequence of length n
in G is %. We also denote S(%) as the sum of the lengths of words in %: S(%) =
|w1|+· · ·+|wn|. This is used when defining the time complexity of the algorithms
in the paper. Before presenting the full algorithm for inductive inference, an
intermediate algorithm is needed which is used within the full algorithm. The
intermediate algorithm is provided with the lengths of the production successors
for each letter of the alphabet as input, and it is able to determine whether the
input words can produce a D0L-system with these successor lengths.

Proposition 1. Given an alphabet V = {a1, . . . , am}, a sequence % = (w1, . . . ,
wn) of n words over V such that V = alph({w1, . . . , wn−1}) and a set of integers
j1, . . . , jm ∈ N0, there exists at most one D0L-system G over V that is compat-
ible with % and satisfies condition ji = |xi| for each production ai → xi ∈ P .
Furthermore, G can be determined in O(S(%)) time.

A constructive proof of this proposition is given by Algorithm 1. It scans the first
letter of w1, say ai, and creates a production such that ai → xi, where xi consists
of the first ji letters of w2. The algorithm continues with the second letter of w1

and the subsequent letters of w2. As each new letter is encountered, a production
is added to the production set P . After processing all letters of w1, the algorithm
proceeds in the same way for all pairs of consecutive words wp, wp+1 ∈ %, p ≤
n−1. Since V = alph({w1, . . . , wn−1}), every letter as well as its successor will be
encountered, ensuring that every production has been determined. The result is a
D0L-system G compatible with the developmental sequence %. The algorithm will
fail if a letter is encountered for which a production has already been found and
the subsequent letters of the next word do not match the production successor.
It can be seen that this algorithm runs in O(S(%)) time.

Proposition 2. Consider alphabet V = {a1, . . . , am} and a sequence % = (w1,
. . . , wn) of n > 1 words over V . Let ki, 1 ≤ i ≤ m be one plus the length of
the first word in % following the word in which ai occurs for the first time. A
D0L-system G compatible with % can then be found or reported as non-existent
in the worst-case time O((k1k2 · · · km) · S(%)).

The constructive proof of this proposition consists of Algorithm 2 that uses a
brute force approach to find a D0L-system compatible with the developmental

Methods for Inferring L-systems 5

Algorithm 1 Determines the unique D0L-system G compatible with %, if it
exists.
Input: Alphabet V = {a1, . . . , am}, sequence of words % = (w1, . . . , wn) such that

V = alph({w1, . . . , wn−1}), and the set β = {j1 . . . , jm} of the successor length for
each letter ai.

Output: The D0L-system G over V compatible with %, if one exists, or ∅ otherwise,
1: Let x1, . . . , xm be string variables set to null
2: for p from 1 to n− 1 do
3: Let r ← 1
4: for q from 1 to |wp| do
5: Let i be such that ai is equal to wp[q]
6: if xi is null then
7: xi ← wp+1[r, r + ji − 1]
8: else if xi 6= wp+1[r, r + ji − 1] then
9: return ∅

10: end if
11: r = r + ji
12: end for
13: end for
14: return D0L-system with axiom w1 and production set P = {ai → xi | 1 ≤ i ≤ m}.

sequence % by trying all possible combinations of successor lengths. The algo-
rithm begins by determining, for each letter ai ∈ V , the first word wp ∈ % in
which ai occurs. This requires time O(S(%)). Any D0L-system potentially com-
patible with % has successor xi of symbol ai of length |wp+1| at most. There
are ki = |wp+1| + 1 (including zero) possible values for the length ji = |xi| of
this successor, and k1 · k2 · · · km possible combinations of the lengths j1, . . . , jm,
0 ≤ ji ≤ ki − 1, overall. For each such combination, Algorithm 2 calls Algo-
rithm 1 to find a D0L-system compatible with %. If, in some iteration, such a
D0L-system is found, it is reported as the output of Algorithm 2. In the oppo-
site case, the algorithm reports that no D0L-system compatible with the given
sequence % exists. As each iteration of Algorithm 1 requires O(S(%)) time, the
overall complexity of Algorithm 2 is O(k1 · k2 · · · km · S(%)) (or O(S(%)m+1) as
an upper bound). This time grows exponentially as m increases, but, if m is
taken to be a fixed variable, the algorithm has polynomial time complexity with
respect to S(%).

The construction presented in [15] with the goal of determining decidability
of the D0L-system existence is very similar to the algorithm given here. We use
Algorithm 2 as a subroutine within the context-sensitive algorithms later in the
paper.

Different D0L-systems may generate the same sequence %. For instance, the
sequences generated by the systems G1 = ({A,B,C}, AB, {A → C,B → AB,
C → C}) and G2 = ({A,B,C}, AB, {A→ CA,B → B,C → C}) are the same.
Algorithm 2 can be easily modified to determine every compatible D0L-system.
Instead of returning a D0L-system G as soon as one is found, output G and
continue the procedure.

6 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

Algorithm 2 Solves the D0L inference problem

Input: alphabet V = {a1, . . . , am}, sequence of words % = (w1, . . . , wn),
Output: a D0L-system G over V that gives % as the first n words generated, or ∅ if

none exists
1: Let y1, . . . , ym be integer variables set to −1
2: for each letter position q of each word wp where p is from 1 to n− 1 do
3: Let i be such that ai is equal to wp[q]
4: if yi is equal to −1 then
5: yi ← p
6: end if
7: end for
8: for each vector β = (j1, . . . , jm), where 0 ≤ ji ≤ |wyi+1| do
9: set G to the output of Algorithm 1 with % and β

10: if G 6= ∅ then
11: return G
12: end if
13: end for
14: return ∅

Corollary 1. For a fixed alphabet V , and sequence of words % = (w1, . . . , wn),
n > 1 such that V = alph({w1, . . . , wn−1}), there is an algorithm to find every
D0L-system over V that is compatible with % in polynomial time S(%).

3.2 Deterministic Context-Sensitive L-Systems

We now address the inductive inference problem for context-sensitive L-systems.

Deterministic context-sensitive inductive inference problem:
Given an alphabet V = {a1, . . . , am}, context lengths k, l ∈ N, and a
sequence % = (w1, . . . , wn) of n > 1 words over V , find a deterministic
(k, l)-system G that generates % as the developmental sequence of length
n.

Similarly to the case of D0L systems, we say that G is compatible with an input
sequence % = (w1, . . . , wn) if % is the developmental sequence of length n in G.

Algorithm 1 can be extended to deterministic (k, l)-systems by replacing
productions of the form a→ x with productions of the form u < a > v → x, for
each substring uav of length k + l + 1 appearing in %. The first k symbols then
are the left context u, the next symbol is the strict predecessor a, and the last
l symbols are the right context v. The inference process thus involves “sliding
a window” of length k + l + 1 over each word of w1, . . . , wn−1. In addition,
separate productions with shorter contexts are considered near the beginning
and end of each word wi. As discussed in Section 2, when applying rules for
a context-sensitive L-system, the production with the longest applicable left
context and then the longest applicable right context will be chosen. The left
and right contexts can, however, be shorter than k and l when there are less
than that many symbols of context in the letter a in wi being rewritten, at

Methods for Inferring L-systems 7

which point, they are still the longest contexts possible. A deterministic (k, l)-
system in which the context are always the longest possible up to the limit k, l
is said to be of maximal context.

Formalizing these concepts, given a sequence of words % = (w1, . . . , wn) over
V we define the set of (k, l)-predecessors in %, denoted by ∆k,l(%), as the set of
all triplets u < a > v such that:

– a ∈ V ,
– uav is a subword of some w ∈ {w1, . . . , wn−1},
– either |u| = k or 0 ≤ |u| < k and uav is a prefix of w, and
– either |v| = l or 0 ≤ |v| < l and uav is a suffix of w.

We further define a ∆k,l(%)-subset (k, l)-system to be a tuple G = (V, ω, P),
where V is an alphabet, ω ∈ V ∗ is the axiom, and P is a finite set of productions
u < a > v → x such that u < a > v ∈ ∆k,l(%). A ∆k,l(%)-subset (k, l)-system is
said to be compatible with % if it can generate % as the first sequence of words.

A ∆k,l(%)-subset (k, l)-system may be incomplete, in the sense there may be
words generated past wn−1 that have a subword uav such that u < a > v /∈
∆k,l(%). Nevertheless, by taking all remaining words u < a > v /∈ ∆k,l(%) such
that |u| ≤ k and |v| ≤ l, and creating productions u < a > v → χ where χ ∈ V ∗

is an arbitrary successor, results in a completely specified deterministic (k, l)-
system. It is thus easy to extend any ∆k,l(%)-subset (k, l)-system into a fully
specified deterministic (k, l)-system.

Proposition 3. Given an alphabet V = {a1, . . . , am}, context sizes k and l, a
sequence of n words % = (w1, . . . , wn) over V , and a function f(u, a, v) into N0

defining the length of the successors for predecessors u < a > v ∈ ∆k,l(%), there
exists at most one ∆k,l(%)-subset (k, l)-system G such that:

– G is compatible with %,
– u < a > v → xu,a,v is a production with f(u, a, v) = |xu,a,v|.

Furthermore, G can be determined in O((k + l) · S(%)) time when data is stored
in the form of a trie.

Proof. We construct Algorithm 3 that extends Algorithm 1 to the context-
sensitive case. The goal is to take the sequence % and a length associated with
each predecessor string in ∆k,l(%) as input (these input length correspond to
parameters j ∈ β in Algorithm 1), and determine a ∆k,l(%)-subset (k, l)-system
compatible with these lengths. To this end, each predecessor string u < a >
v ∈ ∆k,l(%) as well as the length of its successor, f(u, a, v), is stored in a trie
data structure. The trie enables the lookup of u < a > v information in time
linearly proportional to |uav|. The algorithm “slides a window” over each word,
w1, . . . , wn−1 ∈ %. As each new predecessor u < a > v is encountered, the pre-
scribed length of its successor, stored in the trie, is used to determine the letters
from the next word that make up the successor (as done in Algorithm 1). The
result is also stored in the trie. If a successor has previously been found, the
algorithm compares it with the current candidate. If they do not match, the

8 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

∆k,l(%)-subset (k, l)-system G sought does not exist. Alternatively, if no conflict
occurs, the trie contains the inferred ∆k,l(%)-subset (k, l)-system G, The time
taken to slide such a window over % is O((k + l) · S(%)). ut

Since each ∆k,l(%)-subset (k, l)-system can be extended into a determinis-
tic (k, l)-system by associating all elements not stored in the trie with identity
productions, the following is true:

Corollary 2. Given an alphabet V = {a1, . . . , am}, context sizes k and l, a
sequence of n words % = (w1, . . . , wn) over V , and a function f(u, a, v) to N0

defining the length of the successors for predecessors u < a > v ∈ ∆k,l(%), a
deterministic (k, l)-system G can be found, if it exists, such that:

– G is compatible with %,
– u < a > v → xu,a,v is a production with f(u, a, v) = |xu,a,v|.

Furthermore, one such system G, if it exists, can be determined in O((k+l)·S(%))
time.

It is also possible to use Algorithm 3 as as a subprogram, similar to Algorithm
1, to consider all possible successor lengths.

Proposition 4. Given an m-letter alphabet V , context sizes k and l, and a
sequence of words % = (w1, . . . , wn) where q is the longest word in %, a ∆k,l(%)-
subset (k, l)-system compatible with % can be found, if one exists, in worst case

time O(q(m+1)k+l+1 · (k + l) · S(%)).

Proof. We proceed by constructing Algorithm 4 that extends Algorithm 2 to the
context-sensitive case. The algorithm starts by creating an empty trie. It then
scans % while sliding a window, such that when reading u < a > v, it stores this
predecessor as well as the following information associated with it in the trie:

– the first word where u < a > v occurs, denoted by g(u, a, v) with 1 ≤
g(u, a, v) ≤ n− 1,

– a unique natural number denoted by h(u, a, v) such that the jth triple added
to the trie is assigned j.

Both g(u, a, v) and h(u, a, v) can be determined as it is sliding the window. At
the end, it can determine r such that r = |∆k,l(%)| and each h(u, a, v) is a
unique number in {1, . . . , r}. Next, it introduces two vectors α and β with r
components. With a depth-first traversal of the trie, when scanning u < a > v,
the algorithm stores one plus the length of the word following the occurrence of
u < a > v, 1+ |wg(u,a,v)+1|, at position h(u, a, v) of α; the length of the successor
with predecessor u < a > v is strictly less than this amount. The algorithm
continues as with Algorithm 2 through all combinations of β = (j1, . . . , jr),
where 0 ≤ ji < α(i), for 1 ≤ i ≤ r. There are

∏
1≤i≤r α(i) such combinations for

β, and it calls Algorithm 3 for each. This is O((k+ l) · S(%) ·
∏

1≤i≤r α(i)) time.
Simplifying by letting q be the longest word in %, we get O(qr · (k + l) · S(%)).
Here, an upper bound for r is (m+ 1)k+l+1 since there are m possibilities for ai,
(m + 1)k for u (due to prefixes shorter than k), and similarly for v. Hence, the

time is O(q(m+1)k+l+1 · (k + l) · S(%)). ut

Methods for Inferring L-systems 9

This can be done in polynomial time if m, k, and l are fixed. For context-
sensitive L-systems in the literature, k and l are often quite small (often only
one). Therefore, for these systems, the time mainly depends on the alphabet
size.

By associating any undefined elements in the trie with identity productions,
the following is true:

Corollary 3. Given an m-letter alphabet V , context sizes k and l, and a given
sequence of words % = (w1, . . . , wn) where q is the longest word in %, a deter-
ministic (k, l)-system compatible with % can be found, if one exists, in worst case

O(q(m+1)k+l+1 · (k + l) · S(%)) time.

If the alphabet size and context sizes are fixed, the algorithm runs in poly-
nomial time.

Corollary 4. For a fixed size alphabet V , fixed k and l context sizes, and a given
sequence of words %, there is an algorithm to find a deterministic (k, l)-system
compatible with % in polynomial time, S(%).

4 Speedups Using Letter Occurrence Arithmetic

4.1 Context-Free Case

This section will first present a mathematical approach to speeding up inductive
inference of D0L-systems. The idea as applied to D0L systems is in fact already
known [9], but we review it here as it helps understand the context-sensitive case.
We then extend it to context-sensitive L-systems, for which it was not described
before.

Let G = (V, ω, P) be a D0L system over alphabet V = {a1, . . . , am}, xi the

successor of production ai → xi ∈ P , and x
(j)
i = |xi|aj

the number of occurrences
of letter aj in this successor for 1 ≤ i, j ≤ m. The growth matrix of G, denoted

by M(G), is then the m×m matrix such that position i, j contains x
(j)
i .

Given a sequence of words % = (w1, . . . , wn) over V = {a1, . . . , am}, and
s, r ∈ N such that 1 ≤ s ≤ s + r − 1 ≤ n, let Ys,r(%) be the r ×m matrix such
that element i, j is |ws+i−1|aj : the number of occurrences of letter aj in word
ws+i−1. In other words, row i of Ys,r(%) is the Parikh map of ws+i−1. We then
have: 

y
(1)
1 y

(2)
1 . . . y

(m)
1

y
(1)
2 y

(2)
2 . . . y

(m)
2

...
. . .

...

y
(1)
m y

(2)
m . . . y

(m)
m


︸ ︷︷ ︸

Y1,m(%)


x
(1)
1 x

(2)
1 . . . x

(m)
1

x
(1)
2 x

(2)
2 . . . y

(m)
2

...
. . .

...

x
(1)
m x

(2)
m . . . x

(m)
m


︸ ︷︷ ︸

M(G)

=


y
(1)
2 y

(2)
2 . . . y

(m)
2

y
(1)
3 y

(2)
3 . . . y

(m)
3

...
. . .

...

y
(1)
m+1 y

(2)
m+1 . . . y

(m)
m+1


︸ ︷︷ ︸

Y2,m(%)

(1)

Now, suppose that we are given an initial sequence of words, % = (w1, . . . , wm+1),
generated by an unknown D0L-system G over V = {a1, . . . , am}. The growth

10 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

matrix M of G is a (not necessarily unique) solution to the equation

Y1,m(%)M = Y2,m(%). (2)

The sum of the entries in row i of M is the length of the presumed successor xi
of ai. Given this length for each i = 1, . . . ,m, we can use Algorithm 1 to infer the
D0L-system compatible with %, if it exists. As the word lengths are non-negative
integers, only integer solutions to Equation 2 are of interest, i.e., we consider
Equation 2 as a system of linear diophantine equations. The general solution to
such a system can be calculated in polynomial time (Corollary 5.3c of [16]). The
solution space of possible entries in M is further reduced to be finite, because

each element x
(j)
i must satisfy the inequality 0 ≤ x

(j)
i ≤ |wp+1|aj : the number

of occurrences of letter aj in the successor xi of ai cannot exceed the number of
occurrences of aj in the word wp+1 derived from a word wp in which ai occurs.
Although we do not have a quantitative evaluation of the resulting speedup, the
use of diophantine equations appears to significantly reduce the number of calls
to Algorithm 1, compared to the brute-force Algorithm 2.

An important special case occurs when matrix Y1,m(%) is invertible. The
growth matrix M = Y1,m(%)−1Y2,m(%) is then unique. If it contains anything
other than non-negative integers, a D0L-system compatible with the given se-
quence % does not exist. If, in contrast, all elements of M are non-negative
integers, Algorithm 1 can find the D0L-system compatible with % (which is then
unique) or determine that such a system does not exist, in O(S(%)) time (Propo-
sition 1). Since the inverse of an m ×m matrix can be calculated in O(m2.376)
time ([17] combined with later result on faster matrix multiplication [18]), the
following is immediate:

Proposition 5. Given an m-letter alphabet V and a sequence of words % =
(w1, . . . , wm+1) such that Y1,m(%) is invertible, there is an algorithm that deter-
mines the unique D0L system compatible with %, or reports that none exists, in
time O(S(%) + m2.376). Furthermore, if m is fixed, then the algorithm runs in
time O(S(%)).

Lastly, if more than m + 1 words are given as input, as long as there are
m consecutive words starting at word i such that Yi,m is invertible, then this is
enough to uniquely determine a D0L system if it exists.

4.2 Context-Sensitive Case

This procedure is extended next to work with deterministic (k, l)-systems.

Let k, l ∈ N, and consider a deterministic (k, l)-system G = (V, ω, P) that
is maximal context. Next, consider some fixed ordering (such as lexicographic)
of all elements in V ≤k < V > V ≤l (all possible windows including maximal
contexts). Let r be the number of these words, and let zi be the ith such word,
for 1 ≤ i ≤ r. Here, if m = |V |, then r ≤ (m+ 1)k+lm.

Methods for Inferring L-systems 11

Given a word w ∈ V ∗, define the (k, l)-windowed Parikh vector of w as the
r-coordinate vector ψk,l(w), where for 1 ≤ i ≤ r,

ψk,l(w)(i) = |{q | zi = u < a > v,w[q, s] = uav,
and either k = |u| or |u| < k and q = 1,
and either l = |v| or |v| < l and s = |w|}|.

This can be explained as follows: Consider position i of the vector where zi =
u < a > v. Intuitively, position i would give the number of times a production
with predecessor u < a > v would get applied when rewriting w with maximal
contexts. When |u| = k and |v| = l, this is the number of times zi occurs as a
subword of w; when |u| < k and |v| = l, this is 1 if uav is a prefix of w and
0 otherwise; when |u| = k and |v| < l, this is 1 if uav is a suffix of w and 0
otherwise; when |u| < k and |v| < l, this is 1 if uav = w and 0 otherwise.

Let i satisfy 1 ≤ i ≤ r, let xi be the string such that (zi = u < a > v)→ xi ∈
P , and let x

(j)
i = ψ(xi)(j), for 1 ≤ j ≤ m (ψ(xi) is the normal Parikh vector).

The growth matrix of G, denoted by M(G), is the r ×m matrix:

M(G) =


x
(1)
1 x

(2)
1 . . . x

(m)
1

x
(1)
2 x

(2)
2 . . . y

(m)
2

...
. . .

...

x
(1)
r x

(2)
r . . . x

(m)
r

 (3)

Let wi be the ith word derived by G, for 1 ≤ i ≤ n (thus ω = w1). Further-

more, let t
(j)
i = ψk,l(wi)(j) for 1 ≤ i < n, 1 ≤ j ≤ r. Let s, r ∈ N be such that

1 ≤ s ≤ s+r−1 ≤ n−1, and let Ts,r(%) be the r×r matrix such that the element
at position i, j is ti+s−1(j) (that is, the rows are ψk,l(ws), . . . , ψk,l(ws+r−1)).
Similar to Equation 1, we have:

T1,r(%)M(G) = Y2,r(%). (4)

Note Y2,r(%) is an r ×m matrix calculated using the normal Parikh map.
Now, suppose that we are given an initial sequence of words % = (w1, . . . , wn)

over V = {a1, . . . , am} and context sizes k, l, and the goal is to determine if this
sequence can be generated by an unknown deterministic (k, l)-system. Then, on
input %, an algorithm can scan one word at a time while sliding a window, and
make a trie to hold ∆k,l(%) as with the proof of Proposition 4 (recall ∆k,l(%) is
the set of all triplets u < a > v that occur with maximal contexts in all but the
last word of %). Let r = |∆k,l(%)|. A vector α with r components is calculated. In
the trie, when scanning u < a > v, the following are stored: the index of the first
word where u < a > v occurs, g(u, a, v); and some unique number h(u, a, v) from
1 to r giving a position of α. The length 1 + |wg(u,a,v)+1| is stored in position
h(u, a, v) of α. Indeed, after all words u < a > v are added to the trie based on
%, it is possible to calculate r = |∆k,l(%)|, and the h(u, a, v) values then provides
the fixed ordering of the elements in ∆k,l(%). This ordering can then be used for
the calculation of ψk,l(wi).

12 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

Assume henceforth that n ≥ r + 1. Then, as with D0L systems, an interme-
diate goal is instead to determine all integer matrices M such that

T1,r(%)M = Y2,r(%). (5)

By Equation 4, if M is the growth matrix of a (k, l)-system that is compatible
with %, then M is a solution to this equation. In this case, the sum of the entries
of row i gives the length of the successor of the production with predecessor
u < a > v, where h(u, a, v) = i.

Instead of using brute force to try all possibilities of length combinations,
the procedure instead calculates the inverse of T1,r(%) if it exists. If the inverse
does exist, it solves for M as T1,r(%)−1Y2,r(%). Indeed, if there is a (k, l)-system
compatible with %, then M must be the growth matrix of the maximal context
(k, l)-system compatible with %. From M , the length of each production is im-
plied, and Proposition 3 then provides an algorithm to assess compatibility. In
terms of complexity, the trie can be built in O((k + l) · S(%)) time. The inverse
can be computed in O(r2.376) if it exists and so M = T1,r(%)−1 · Y2,r(%) can
again be computed in O(r2.376) time. Then the row sums can be stored back in
the trie, and by using Proposition 3, the unique maximal context ∆k,l(%)-subset
(k, l)-system, if it exists, can be computed in time O((k + l) · S(%)) time.

Proposition 6. Given an m-letter alphabet V , context sizes k, l, and a sequence
of words % = (w1, . . . , wn) over V , with r = |∆k,l(%)|, n ≥ r + 1, and such that
T1,r(%) is invertible, there is an algorithm that determines the unique maximal
context ∆k,l(%)-subset (k, l)-system compatible with %, or reports that none exists,
in time O((k + l) · S(%) + r2.376).

By setting all unused productions not in the trie to be identity productions,
the following is implied:

Corollary 5. Given an m-letter alphabet V , context sizes k, l, and a sequence
of words % = (w1, . . . , wn) over V , with r = |∆k,l(%)|, n ≥ r + 1, and such that
T1,r(%) is invertible, there is an algorithm that determines a deterministic (k, l)-
system compatible with %, or reports that none exist, in time O((k + l) · S(%) +
r2.376).

As with D0L-systems, more generally there can be more than one matrix
that is a solution to Equation 5. It is again possible to consider Equation 5 as a
system of linear diophantine equations. Then for each solution of M , Proposition
3 can be used to assess compatibility. Lastly, to use matrix inversion, if n > r+1,
then it is only necessary to have Ti,r be an invertible matrix for some i in order
to apply this approach.

5 Conclusions and Future Directions

In this paper, polynomial time algorithms are provided that solve the inductive
inference problem, when the size of the alphabet and the context sizes are fixed.

Methods for Inferring L-systems 13

Then a speedup is provided using letter occurrence arithmetic. For context-
sensitive L-systems, if a matrix defined by using a generalization of the Parikh
map on the input words gives an invertible matrix, then the context-sensitive
system can be inferred in polynomial time in the context lengths and the sum
of the input word lengths. This technique can also be used when the matrix is
not invertible by using solutions to linear diophantine equations.

Some immediate questions arise from this work. First, is there a complexity
class such that inferring different types of L systems where the alphabet size is
not fixed is hard for that class? Also, can any approaches presented here work
for nondeterministic (or stochastic) L-systems? In addition, from a practical
perspective, can these approaches be combined with a computer vision approach
to automatically infer L-systems from sequences of images?

Acknowledgements

The research of all authors was supported in part by a grant from the Plant
Phenotyping and Imaging Research Centre (P2IRC), and in part by grants from
Natural Sciences and Engineering Research Council of Canada (I. McQuillan
grant 2016-06172, J. Bernard scholarship, P. Prusinkiewicz grant 2014-05325).

References

1. G. Rozenberg, A. Salomaa, The Mathematical Theory of L Systems, Academic
Press, Inc., New York, 1980.

2. P. Prusinkiewicz, A. Lindenmayer, The Algorithimic Beauty of Plants, Springer
Verlag, New York, 1990.

3. P. Prusinkiewicz, Graphical applications of L-systems, in: Proceedings of Graphics
Interface ’86 / Vision Interface ’86, 1986, pp. 247–253.

4. P. Prusinkiewicz, Designing and growing virtual plants with L-systems, in: Pro-
ceedings of the XXVI International Horticultural Congress. Acta Horticulturae,
Vol. 630, 2004, pp. 15–28.

5. P. Prusinkiewicz, L. Mündermann, R. Karwowski, B. Lane, The use of positional
information in the modeling of plants, in: Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, ACM,
2001, pp. 289–300.

6. F. Ben-Naoum, A survey on L-system inference, INFOCOMP Journal of Computer
Science 8 (3) (2009) 29–39.

7. B. Runqiang, P. Chen, K. Burrage, J. Hanan, P. Room, J. Belward, Derivation
of L-system models from measurements of biological branching structures using
genetic algorithms, in: Proceedings of the International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, Springer, 2002,
pp. 514–524.

8. X. Sirault, J. Fripp, A. Paproki, P. Kuffner, C. Nguyen, R. Li, H. Daily, J. Guo,
R. Furbank, PlantscanTM: a three-dimensional phenotyping platform for capturing
the structural dynamic of plant development and growth, in: 7th International
Conference on Functional-Structural Plant Models, 2013, pp. 45–48.

14 Ian McQuillan, Jason Bernard, and Przemyslaw Prusinkiewicz

9. P. Doucet, The syntactic inference problem for D0L-sequences, L Systems (1974)
146–161.

10. R. Nakano, N. Yamada, Number theory-based induction of deterministic context-
free L-system grammar, in: International Conference on Knowledge Discovery and
Information Retrieval, SCITEPRESS, 2010, pp. 194–199.

11. H. Jürgensen, A. Lindenmayer, Inference algorithms for developmental systems
with cell lineages, Bulletin of Mathematical Biology 49 (1) (1987) 93–123.

12. H. Feliciangeli, G. T. Herman, Algorithms for producing grammars from sample
derivations: a common problem of formal language theory and developmental bi-
ology, Journal of Computer and System Sciences 7 (1) (1973) 97 – 118.

13. C. G. Nevill-Manning, I. H. Witten, Identifying hierarchical structure in sequences:
A linear-time algorithm, Journal of Artificial Intelligence Research 7 (1) (1997) 67–
82.

14. J. Flum, M. Grohe, Parameterized Complexity Theory (Texts in Theoretical Com-
puter Science. An EATCS Series), Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

15. G. T. Herman, G. Rozenberg, Developmental Systems and Languages, North-
Holland Publishing Company, Oxford, 1975.

16. A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Inc.,
New York, NY, USA, 1986.

17. J. R. Bunch, J. E. Hopcroft, Triangular factorization and inversion by fast matrix
multiplication, Mathematics of Computation 28 (125) (1974) 231–236.

18. D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions,
Journal of Symbolic Computation 9 (3) (1990) 251 – 280, computational algebraic
complexity editorial.

	Methods for Inferring L-systems

