
Chapter 1

Graphical modeling using
L-systems

Lindenmayer systems — or L-systems for short — were conceived as
a mathematical theory of plant development [82]. Originally, they did
not include enough detail to allow for comprehensive modeling of higher
plants. The emphasis was on plant topology, that is, the neighborhood
relations between cells or larger plant modules. Their geometric aspects
were beyond the scope of the theory. Subsequently, several geometric
interpretations of L-systems were proposed with a view to turning them
into a versatile tool for plant modeling. Throughout this book, an
interpretation based on turtle geometry is used [109]. Basic notions
related to L-system theory and their turtle interpretation are presented
below.

1.1 Rewriting systems

The central concept of L-systems is that of rewriting. In general, rewrit-
ing is a technique for defining complex objects by successively replacing
parts of a simple initial object using a set of rewriting rules or produc-
tions . The classic example of a graphical object defined in terms of
rewriting rules is the snowflake curve (Figure 1.1), proposed in 1905 by Koch

constructionvon Koch [155]. Mandelbrot [95, page 39] restates this construction as
follows:

One begins with two shapes , an initiator and a generator.
The latter is an oriented broken line made up of N equal
sides of length r. Thus each stage of the construction begins
with a broken line and consists in replacing each straight
interval with a copy of the generator, reduced and displaced
so as to have the same end points as those of the interval
being replaced.

2 Chapter 1. Graphical modeling using L-systems

initiator

generator

Figure 1.1: Construction of the snowflake curve

While the Koch construction recursively replaces open polygons, rewrit-
ing systems that operate on other objects have also been investigated.
For example, Wolfram [160, 161] studied patterns generated by rewrit-
ing elements of rectangular arrays. A similar array-rewriting mecha-
nism is the cornerstone of Conway’s popular game of life [49, 50]. An
important body of research has been devoted to various graph-rewriting
systems [14, 33, 34].

The most extensively studied and the best understood rewriting sys-Grammars
tems operate on character strings. The first formal definition of such a
system was given at the beginning of this century by Thue [128], but
a wide interest in string rewriting was spawned in the late 1950s by
Chomsky’s work on formal grammars [13]. He applied the concept of
rewriting to describe the syntactic features of natural languages. A
few years later Backus and Naur introduced a rewriting-based notation
in order to provide a formal definition of the programming language
ALGOL-60 [5, 103]. The equivalence of the Backus-Naur form (BNF)
and the context-free class of Chomsky grammars was soon recognized
[52], and a period of fascination with syntax, grammars and their appli-
cation to computer science began. At the center of attention were sets
of strings — called formal languages — and the methods for generating,
recognizing and transforming them.

In 1968 a biologist, Aristid Lindenmayer, introduced a new type ofL-systems
string-rewriting mechanism, subsequently termed L-systems [82]. The
essential difference between Chomsky grammars and L-systems lies in

1.2. DOL-systems 3

Figure 1.2: Relations between Chomsky classes of languages and language
classes generated by L-systems. The symbols OL and IL denote language
classes generated by context-free and context-sensitive L-systems, respec-
tively.

the method of applying productions. In Chomsky grammars produc-
tions are applied sequentially, whereas in L-systems they are applied
in parallel and simultaneously replace all letters in a given word. This
difference reflects the biological motivation of L-systems. Productions
are intended to capture cell divisions in multicellular organisms, where
many divisions may occur at the same time. Parallel production ap-
plication has an essential impact on the formal properties of rewriting
systems. For example, there are languages which can be generated
by context-free L-systems (called OL-systems) but not by context-free
Chomsky grammars [62, 128] (Figure 1.2).

1.2 DOL-systems

This section presents the simplest class of L-systems, those which are
deterministic and context-free, called DOL-systems. The discussion
starts with an example that introduces the main idea in intuitive terms.

Consider strings (words) built of two letters a and b, which may Example
occur many times in a string. Each letter is associated with a rewriting
rule. The rule a → ab means that the letter a is to be replaced by
the string ab, and the rule b → a means that the letter b is to be
replaced by a. The rewriting process starts from a distinguished string
called the axiom. Assume that it consists of a single letter b. In the
first derivation step (the first step of rewriting) the axiom b is replaced

4 Chapter 1. Graphical modeling using L-systems

Figure 1.3: Example of a derivation in a DOL-system

by a using production b → a. In the second step a is replaced by ab
using production a → ab. The word ab consists of two letters, both of
which are simultaneously replaced in the next derivation step. Thus, a
is replaced by ab, b is replaced by a, and the string aba results. In a
similar way, the string aba yields abaab which in turn yields abaababa,
then abaababaabaab, and so on (Figure 1.3).

Formal definitions describing DOL-systems and their operation are
given below. For more details see [62, 127].

Let V denote an alphabet, V ∗ the set of all words over V , andL-system
V + the set of all nonempty words over V . A string OL-system is an
ordered triplet G = 〈V, ω, P 〉 where V is the alphabet of the system,
ω ∈ V + is a nonempty word called the axiom and P ⊂ V × V ∗ is a
finite set of productions. A production (a, χ) ∈ P is written as a →
χ. The letter a and the word χ are called the predecessor and the
successor of this production, respectively. It is assumed that for any
letter a ∈ V , there is at least one word χ ∈ V ∗ such that a → χ. If
no production is explicitly specified for a given predecessor a ∈ V , the
identity production a → a is assumed to belong to the set of productions
P . An OL-system is deterministic (noted DOL-system) if and only if
for each a ∈ V there is exactly one χ ∈ V ∗ such that a → χ.

Let µ = a1 . . . am be an arbitrary word over V . The word ν =Derivation
χ1 . . . χm ∈ V ∗ is directly derived from (or generated by) µ, noted µ ⇒
ν, if and only if ai → χi for all i = 1, . . . ,m. A word ν is generated by
G in a derivation of length n if there exists a developmental sequence of
words µ0, µ1, . . . , µn such that µ0 = ω, µn = ν and µ0 ⇒ µ1 ⇒ . . . ⇒
µn.

1.2. DOL-systems 5

Figure 1.4: Development of a filament (Anabaena catenula) simulated using
a DOL-system

The following example provides another illustration of the operation of Anabaena
DOL-systems. The formalism is used to simulate the development of a
fragment of a multicellular filament such as that found in the blue-green
bacteria Anabaena catenula and various algae [25, 84, 99]. The symbols
a and b represent cytological states of the cells (their size and readiness
to divide). The subscripts l and r indicate cell polarity, specifying the
positions in which daughter cells of type a and b will be produced. The
development is described by the following L-system:

ω : ar

p1 : ar → albr

p2 : al → blar

p3 : br → ar

p4 : bl → al

(1.1)

Starting from a single cell ar (the axiom), the following sequence of
words is generated:

ar

albr

blarar

alalbralbr

blarblararblarar

· · ·

6 Chapter 1. Graphical modeling using L-systems

Under a microscope, the filaments appear as a sequence of cylin-
ders of various lengths, with a-type cells longer than b-type cells. The
corresponding schematic image of filament development is shown in
Figure 1.4. Note that due to the discrete nature of L-systems, the con-
tinuous growth of cells between subdivisions is not captured by this
model.

1.3 Turtle interpretation of strings

The geometric interpretation of strings applied to generate schematic
images of Anabaena catenula is a very simple one. Letters of the
L-system alphabet are represented graphically as shorter or longer rect-
angles with rounded corners. The generated structures are one-dimen-
sional chains of rectangles, reflecting the sequence of symbols in the
corresponding strings.

In order to model higher plants, a more sophisticated graphical in-Previous
methods terpretation of L-systems is needed. The first results in this direction

were published in 1974 by Frijters and Lindenmayer [46], and Hogeweg
and Hesper [64]. In both cases, L-systems were used primarily to de-
termine the branching topology of the modeled plants. The geometric
aspects, such as the lengths of line segments and the angle values, were
added in a post-processing phase. The results of Hogeweg and Hesper
were subsequently extended by Smith [136, 137], who demonstrated the
potential of L-systems for realistic image synthesis.

Szilard and Quinton [141] proposed a different approach to L-system
interpretation in 1979. They concentrated on image representations
with rigorously defined geometry, such as chain coding [43], and showed
that strikingly simple DOL-systems could generate the intriguing, con-
voluted curves known today as fractals [95]. These results were sub-
sequently extended in several directions. Siromoney and Subrama-
nian [135] specified L-systems which generate classic space-filling curves.
Dekking investigated the limit properties of curves generated by L-
systems [32] and concentrated on the problem of determining the fractal
(Hausdorff) dimension of the limit set [31]. Prusinkiewicz focused on
an interpretation based on a LOGO-style turtle [1] and presented more
examples of fractals and plant-like structures modeled using L-systems
[109, 111]. Further applications of L-systems with turtle interpretation
include realistic modeling of herbaceous plants [117], description of ko-
lam patterns (an art form from Southern India) [112, 115, 133, 134],
synthesis of musical scores [110] and automatic generation of space-
filling curves [116].

The basic idea of turtle interpretation is given below. A state of theTurtle
turtle is defined as a triplet (x, y, α), where the Cartesian coordinates
(x, y) represent the turtle’s position, and the angle α, called the heading,
is interpreted as the direction in which the turtle is facing. Given
the step size d and the angle increment δ, the turtle can respond to

1.3. Turtle interpretation of strings 7

Figure 1.5: (a) Turtle interpretation of string symbols F , +, −. (b) Inter-
pretation of a string. The angle increment δ is equal to 90◦. Initially the
turtle faces up.

commands represented by the following symbols (Figure 1.5a):

F Move forward a step of length d. The state of the turtle
changes to (x′, y′, α), where x′ = x + d cos α and y′ =
y + d sin α. A line segment between points (x, y) and
(x′, y′) is drawn.

f Move forward a step of length d without drawing a line.

+ Turn left by angle δ. The next state of the turtle is
(x, y, α+δ). The positive orientation of angles is counter-
clockwise.

− Turn right by angle δ. The next state of the turtle is
(x, y, α − δ).

Given a string ν, the initial state of the turtle (x0, y0, α0) and fixed Interpretation
parameters d and δ, the turtle interpretation of ν is the figure (set of
lines) drawn by the turtle in response to the string ν (Figure 1.5b).
Specifically, this method can be applied to interpret strings which are
generated by L-systems. For example, Figure 1.6 presents four approxi-
mations of the quadratic Koch island taken from Mandelbrot’s book [95,
page 51]. These figures were obtained by interpreting strings generated
by the following L-system:

ω : F − F − F − F
p : F → F − F + F + FF − F − F + F

The images correspond to the strings obtained in derivations of length
0 to 3. The angle increment δ is equal to 90◦. The step length d is
decreased four times between subsequent images, making the distance

8 Chapter 1. Graphical modeling using L-systems

Figure 1.6: Generating a quadratic Koch island

between the endpoints of the successor polygon equal to the length of
the predecessor segment.

The above example reveals a close relationship between Koch con- Koch
constructions
vs. L-systems

structions and L-systems. The initiator corresponds to the axiom and
the generator corresponds to the production successor. The predeces-
sor F represents a single edge. L-systems specified in this way can be
perceived as codings for Koch constructions. Figure 1.7 presents further
examples of Koch curves generated using L-systems. A slight compli-
cation occurs if the curve is not connected; a second production (with
the predecessor f) is then required to keep components the proper dis-
tance from each other (Figure 1.8). The ease of modifying L-systems
makes them suitable for developing new Koch curves. For example, one
can start from a particular L-system and observe the results of insert-
ing, deleting or replacing some symbols. A variety of curves obtained
this way are shown in Figure 1.9.

1.3. Turtle interpretation of strings 9

Figure 1.7: Examples of Koch curves generated using L-systems: (a)
Quadratic Koch island [95, page 52], (b) A quadratic modification of the
snowflake curve [95, page 139]

Figure 1.8: Combination of islands and lakes [95, page 121]

10 Chapter 1. Graphical modeling using L-systems

Figure 1.9: A sequence of Koch curves obtained by successive modification
of the production successor

1.4. Synthesis of DOL-systems 11

a n=10, δ=90◦
Fl
Fl→Fl+Fr+
Fr→-Fl-Fr

b n=6, δ=60◦
Fr
Fl→Fr+Fl+Fr
Fr→Fl-Fr-Fl

Figure 1.10: Examples of curves generated by edge-rewriting L-systems: (a)
the dragon curve [48], (b) the Sierpiński gasket [132]

1.4 Synthesis of DOL-systems

Random modification of productions gives little insight into the rela-
tionship between L-systems and the figures they generate. However,
we often wish to construct an L-system which captures a given struc-
ture or sequence of structures representing a developmental process.
This is called the inference problem in the theory of L-systems. Al-
though some algorithms for solving it were reported in the literature
[79, 88, 89], they are still too limited to be of practical value in the
modeling of higher plants. Consequently, the methods introduced be-
low are more intuitive in nature. They exploit two modes of operation
for L-systems with turtle interpretation, called edge rewriting and node
rewriting using terminology borrowed from graph grammars [56, 57, 87].
In the case of edge rewriting, productions substitute figures for poly-
gon edges, while in node rewriting, productions operate on polygon
vertices. Both approaches rely on capturing the recursive structure of
figures and relating it to a tiling of a plane. Although the concepts are
illustrated using abstract curves, they apply to branching structures
found in plants as well.

1.4.1 Edge rewriting

Edge rewriting can be viewed as an extension of Koch constructions.
For example, Figure 1.10a shows the dragon curve [21, 48, 95] and the
L-system that generated it. Both the Fl and Fr symbols represent
edges created by the turtle executing the “move forward” command.
The productions substitute Fl or Fr edges by pairs of lines forming

12 Chapter 1. Graphical modeling using L-systems

a
n=4, δ=60◦
Fl
Fl→Fl+Fr++Fr-Fl--FlFl-Fr+
Fr→-Fl+FrFr++Fr+Fl--Fl-Fr

b
n=2, δ=90◦
-Fr
Fl→FlFl-Fr-Fr+Fl+Fl-Fr-FrFl+

Fr+FlFlFr-Fl+Fr+FlFl+
Fr-FlFr-Fr-Fl+Fl+FrFr-

Fr→+FlFl-Fr-Fr+Fl+FlFr+Fl-
FrFr-Fl-Fr+FlFrFr-Fl-
FrFl+Fl+Fr-Fr-Fl+Fl+FrFr

Figure 1.11: Examples of FASS curves generated by edge-rewriting L-
systems: (a) hexagonal Gosper curve [51], (b) quadratic Gosper curve [32]
or E-curve [96]

left or right turns. Many interesting curves can be obtained assuming
two types of edges, “left” and “right.” Figures 1.10b and 1.11 present
additional examples.

The curves included in Figure 1.11 belong to the class of FASSFASS curve
construction curves (an acronym for space-filling, self-avoiding, simple and self-

similar) [116], which can be thought of as finite, self-avoiding approxi-
mations of curves that pass through all points of a square (space-filling
curves [106]). McKenna [96] presented an algorithm for constructing
FASS curves using edge replacement. It exploits the relationship be-
tween such a curve and a recursive subdivision of a square into tiles.
For example, Figure 1.12 shows the tiling that corresponds to the E-
curve of Figure 1.11b. The polygon replacing an edge Fl (Figure 1.12a)
approximately fills the square on the left side of Fl (b). Similarly, the
polygon replacing an edge Fr (c) approximately fills the square on the
right side of that edge (d). Consequently, in the next derivation step,
each of the 25 tiles associated with the curves (b) or (d) will be covered
by their reduced copies (Figure 1.11b). A recursive application of this
argument indicates that the whole curve is approximately space-filling.
It is also self-avoiding due to the following two properties:

1.4. Synthesis of DOL-systems 13

Fl→FlFl+Fr+Fr-Fl-Fl+Fr+FrFl-Fr-FlFlFr+
Fl-Fr-FlFl-Fr+FlFr+Fr+Fl-Fl-FrFr+

Fr→-FlFl+Fr+Fr-Fl-FlFr-Fl+FrFr+Fl+Fr-
FlFrFr+Fl+FrFl-Fl-Fr+Fr+Fl-Fl-FrFr

Figure 1.12: Construction of the E-curve on the square grid. Left and right
edges are distinguished by the direction of ticks.

• the generating polygon is self-avoiding, and

• no matter what the relative orientation of the polygons lying on
two adjacent tiles, their union is a self-avoiding curve.

The first property is obvious, while the second can be verified by con-
sidering all possible relative positions of a pair of adjacent tiles.

Using a computer program to search the space of generating poly-
gons, McKenna found that the E-curve is the simplest FASS curve
obtained by edge replacement in a square grid. Other curves require
generators with more edges (Figure 1.13). The relationship between
edge rewriting and tiling of the plane extends to branching structures,
providing a method for constructing and analyzing L-systems which
operate according to the edge-rewriting paradigm (see Section 1.10.3).

1.4.2 Node rewriting

The idea of node rewriting is to substitute new polygons for nodes of the Subfigures
predecessor curve. In order to make this possible, turtle interpretation
is extended by symbols which represent arbitrary subfigures. As shown
in Figure 1.14, each subfigure A from a set of subfigures A is represented
by:

• two contact points, called the entry point PA and the exit point
QA, and

• two direction vectors, called the entry vector �pA and the exit vector
�qA.

During turtle interpretation of a string ν, a symbol A ∈ A incorporates
the corresponding subfigure into a picture. To this end, A is translated

14 Chapter 1. Graphical modeling using L-systems

Figure 1.13: Examples of FASS curves generated on the square grid using
edge replacement: (a) a SquaRecurve (grid size 7 × 7), (b) an E-tour (grid
size 9 × 9). Both curves are from [96].

Figure 1.14: Description of a subfigure A

1.4. Synthesis of DOL-systems 15

Ln RnLn+1 Rn+1

Ln+2 Rn+2

Figure 1.15: Recursive construction of the Hilbert curve [63] in terms of
node replacement

and rotated in order to align its entry point PA and direction �pA with
the current position and orientation of the turtle. Having placed A, the
turtle is assigned the resulting exit position QA and direction �qA.

For example, assuming that the contact points and directions of Recursive
formulassubfigures Ln and Rn are as in Figure 1.15, the figures Ln+1 and Rn+1

are captured by the following formulas:

Ln+1 = +RnF − LnFLn − FRn+
Rn+1 = −LnF + RnFRn + FLn−

Suppose that curves L0 and R0 are given. One way of evaluating the
string Ln (or Rn) for n > 0 is to generate successive strings recur-
sively, in the order of decreasing value of index n. For example, the
computation of L2 would proceed as follows:

L2 = +R1F − L1FL1 − FR1+
= +(−L0F + R0FR0 + FL0−)F − (+R0F − L0FL0 − FR0+)

F (+R0F − L0FL0 − FR0+) − F (−L0F + R0FR0 + FL0−)+

16 Chapter 1. Graphical modeling using L-systems

Thus, the generation of string Ln can be considered as a string-rewriting
mechanism, where the symbols on the left side of the recursive formulas
are substituted by corresponding strings on the right side. The substi-
tution proceeds in a parallel way with F, + and − replacing themselves.
Since all indices in any given string have the same value, they can be
dropped, provided that a global count of derivation steps is kept. Con-
sequently, string Ln can be obtained in a derivation of length n using
the following L-system:

ω : L
p1 : L → +RF − LFL − FR+
p2 : R → −LF + RFR + FL−

In order to complete the curve definition, it is necessary to specify
the subfigures represented by symbols L and R. In the special case ofPure curves
pure curves [116], these subfigures are reduced to single points. Thus,
one can assume that symbols L and R are erased (replaced by the empty
string) at the end of the derivation. Alternatively, they can be left in
the string and ignored by the turtle during string interpretation. This
second approach is consistent with previous definitions of turtle inter-
pretation [109, 112]. A general discussion of the relationship between
recurrent formulas and L-systems is presented in [61, 62].

Construction of the L-system generating the Hilbert curve can beFASS curve
construction extended to other FASS curves [116]. Consider an array of m×m square

tiles, each including a smaller square, called a frame. The edges of the
frame run at some distance from the tile’s edges. Each frame bounds an
open self-avoiding polygon. The endpoints of this polygon coincide with
the two contact vertices of the frame. Suppose that a single-stroke line
running through all tiles can be constructed by connecting the contact
vertices of neighboring frames using short horizontal or vertical line
segments. A FASS curve can be constructed by the recursive repetition
of this connecting pattern. To this end, the array of m × m connected
tiles is considered a macrotile which contains an open polygon inscribed
into a macroframe. An array of m × m macrotiles is formed, and the
polygons inscribed into the macroframes are connected together. This
construction is carried out recursively, with m × m macrotiles at level
n yielding one macrotile at level n + 1.

Tile arrangements suitable for the generation of FASS curves can
be found algorithmically, by searching the space of all possible arrange-
ments on a grid of a given size. Examples of curves synthesized this
way are given in Figures 1.16 and 1.17.

As in the case of edge rewriting, the relationship between node
rewriting and tilings of the plane extends to branching structures. It
offers a method for synthesizing L-systems that generate objects with a
given recursive structure, and links methods for plant generation based
on L-systems with those using iterated function systems [7] (see Chap-
ter 8).

1.4. Synthesis of DOL-systems 17

a
n=3,δ=90◦
-L
L→LF+RFR+FL-F-LFLFL-FRFR+
R→-LFLF+RFRFR+F+RF-LFL-FR

b
n=2, δ=90◦
-L
L→LFLF+RFR+FLFL-FRF-LFL-

FR+F+RF-LFL-FRFRFR+
R→-LFLFLF+RFR+FL-F-LF+RFR+

FLF+RFRF-LFL-FRFR

Figure 1.16: Sample FASS curves constructed using tiles with contact points
positioned along a tile edge: (a) 3 × 3 tiles form a macrotile, (b) 4 × 4 tiles
form a macrotile

a n=2, δ=90◦
L
L→LFRFL-F-RFLFR+F+LFRFL
R→RFLFR+F+LFRFL-F-RFLFR

b n=2, δ=45◦
L
L→L+F+R-F-L+F+R-F-L-F-R+F+L-F-R-F-L+F+R-F-L-F-R-F-

L+F+R+F+L+F+R-F-L+F+R+F+L-R-F+F+L+F+R-F-L+F+R-F-L
R→R-F-L+F+R-F-L+F+R+F+L-F-R+F+L+F+R-F-L+F+R+F+L+F+

R-F-L-F-R-F-L+F+R-F-L-F-R+F+L-F-R-F-L+F+R-F-L+F+R

Figure 1.17: Sample FASS curves constructed using tiles with contact points
positioned diagonally: (a) 3 × 3 tiles form a macrotile (Peano curve [106]),
(b) 5 × 5 tiles form a macrotile

18 Chapter 1. Graphical modeling using L-systems

1.4.3 Relationship between edge and
node rewriting

The classes of curves that can be generated using the edge-rewriting and
node-rewriting techniques are not disjoint. For example, reconsider the
L-system that generates the dragon curve using edge replacement:

ω : Fl

p1 : Fl → Fl + Fr+
p2 : Fr → −Fl − Fr

Assume temporarily that a production predecessor can contain more
than one letter; thus an entire subword can be replaced by the successor
of a single production (a formalization of this concept is termed pseudo-
L-systems [109]). The dragon-generating L-system can be rewritten as:

ω : Fl
p1 : Fl → Fl + rF+
p2 : rF → −Fl − rF

where the symbols l and r are not interpreted by the turtle. Production
p1 replaces the letter l by the string l + rF− while the leading letter F
is left intact. In a similar way, production p2 replaces the letter r by
the string −Fl−r and leaves the trailing F intact. Thus, the L-system
can be transformed into node-rewriting form as follows:

ω : Fl
p1 : l → l + rF+
p2 : r → −Fl − r

In practice, the choice between edge rewriting and node rewriting
is often a matter of convenience. Neither approach offers an auto-
matic, general method for constructing L-systems that capture given
structures. However, the distinction between edge and node rewriting
makes it easier to understand the intricacies of L-system operation, and
in this sense assists in the modeling task. Specifically, the problem of
filling a region by a self-avoiding curve is biologically relevant, since
some plant structures, such as leaves, may tend to fill a plane without
overlapping [38, 66, 67, 94].

1.5 Modeling in three dimensions

Turtle interpretation of L-systems can be extended to three dimensions
following the ideas of Abelson and diSessa [1]. The key concept is to
represent the current orientation of the turtle in space by three vectors
�H,�L, �U, indicating the turtle’s heading, the direction to the left, and the
direction up. These vectors have unit length, are perpendicular to each

1.5. Modeling in three dimensions 19

Figure 1.18: Controlling the turtle in three dimensions

other, and satisfy the equation �H × �L = �U. Rotations of the turtle are
then expressed by the equation

[
�H ′ �L′ �U ′

]
=

[
�H �L �U

]
R,

where R is a 3× 3 rotation matrix [40]. Specifically, rotations by angle
α about vectors �U,�L and �H are represented by the matrices:

RU(α) =


 cos α sin α 0
− sin α cos α 0

0 0 1




RL(α) =


 cos α 0 − sin α

0 1 0
sin α 0 cos α




RH(α) =


 1 0 0

0 cos α − sin α
0 sin α cos α




The following symbols control turtle orientation in space (Figure 1.18):

+ Turn left by angle δ, using rotation matrix RU(δ).

− Turn right by angle δ, using rotation matrix RU(−δ).

& Pitch down by angle δ, using rotation matrix RL(δ).

∧ Pitch up by angle δ, using rotation matrix RL(−δ).

\ Roll left by angle δ, using rotation matrix RH(δ).

/ Roll right by angle δ, using rotation matrix RH(−δ).

| Turn around, using rotation matrix RU(180◦).

20 Chapter 1. Graphical modeling using L-systems

n=2, δ=90◦
A
A → B-F+CFC+F-D&F∧D-F+&&CFC+F+B//
B → A&F∧CFB∧F∧D∧∧-F-D∧|F∧B|FC∧F∧A//
C → |D∧|F∧B-F+C∧F∧A&&FA&F∧C+F+B∧F∧D//
D → |CFB-F+B|FA&F∧A&&FB-F+B|FC//

Figure 1.19: A three-dimensional extension of the Hilbert curve [139]. Col-
ors represent three-dimensional “frames” associated with symbols A (red), B
(blue), C (green) and D (yellow).

1.6. Branching structures 21

As an example of a three-dimensional object created using an L-
system, consider the extension of the Hilbert curve shown in Figure 1.19.
The L-system was constructed with the node-replacement technique
discussed in the previous section, using cubes and “macrocubes” in-
stead of tiles and macrotiles.

1.6 Branching structures

According to the rules presented so far, the turtle interprets a character
string as a sequence of line segments. Depending on the segment lengths
and the angles between them, the resulting line is self-intersecting or
not, can be more or less convoluted, and may have some segments
drawn many times and others made invisible, but it always remains
just a single line. However, the plant kingdom is dominated by branch-
ing structures; thus a mathematical description of tree-like shapes and
methods for generating them are needed for modeling purposes. An
axial tree [89, 117] complements the graph-theoretic notion of a rooted
tree [108] with the botanically motivated notion of branch axis.

1.6.1 Axial trees

A rooted tree has edges that are labeled and directed. The edge se-
quences form paths from a distinguished node, called the root or base,
to the terminal nodes. In the biological context, these edges are re-
ferred to as branch segments . A segment followed by at least one more
segment in some path is called an internode. A terminal segment (with
no succeeding edges) is called an apex.

An axial tree is a special type of rooted tree (Figure 1.20). At each
of its nodes, at most one outgoing straight segment is distinguished.
All remaining edges are called lateral or side segments. A sequence of
segments is called an axis if:

• the first segment in the sequence originates at the root of the tree
or as a lateral segment at some node,

• each subsequent segment is a straight segment, and

• the last segment is not followed by any straight segment in the
tree.

Together with all its descendants, an axis constitutes a branch. A
branch is itself an axial (sub)tree.

Axes and branches are ordered. The axis originating at the root of
the entire plant has order zero. An axis originating as a lateral segment
of an n-order parent axis has order n+1. The order of a branch is equal
to the order of its lowest-order or main axis.

22 Chapter 1. Graphical modeling using L-systems

Figure 1.20: An axial tree

Figure 1.21: Sample tree generated using a method based on Horton–
Strahler analysis of branching patterns

1.6. Branching structures 23

Figure 1.22: A tree production p and its application to the edge S in a tree
T1

Axial trees are purely topological objects. The geometric connotation
of such terms as straight segment, lateral segment and axis should be
viewed at this point as an intuitive link between the graph-theoretic
formalism and real plant structures.

The proposed scheme for ordering branches in axial trees was in-
troduced originally by Gravelius [53]. MacDonald [94, pages 110–121]
surveys this and other methods applicable to biological and geograph-
ical data such as stream networks. Of special interest are methods
proposed by Horton [70, 71] and Strahler, which served as a basis for
synthesizing botanical trees [37, 152] (Figure 1.21).

1.6.2 Tree OL-systems

In order to model development of branching structures, a rewriting
mechanism can be used that operates directly on axial trees. A rewrit-
ing rule, or tree production, replaces a predecessor edge by a successor
axial tree in such a way that the starting node of the predecessor is
identified with the successor’s base and the ending node is identified
with the successor’s top (Figure 1.22).

A tree OL-system G is specified by three components: a set of edge
labels V , an initial tree ω with labels from V , and a set of tree produc-
tions P . Given the L-system G, an axial tree T2 is directly derived from
a tree T1, noted T1 ⇒ T2, if T2 is obtained from T1 by simultaneously
replacing each edge in T1 by its successor according to the production
set P . A tree T is generated by G in a derivation of length n if there
exists a sequence of trees T0, T1, . . . , Tn such that T0 = ω, Tn = T and
T0 ⇒ T1 ⇒ . . . ⇒ Tn.

24 Chapter 1. Graphical modeling using L-systems

Figure 1.23: Bracketed string representation of an axial tree

1.6.3 Bracketed OL-systems

The definition of tree L-systems does not specify the data structure for
representing axial trees. One possibility is to use a list representation
with a tree topology. Alternatively, axial trees can be represented using
strings with brackets [82]. A similar distinction can be observed in Koch
constructions, which can be implemented either by rewriting edges and
polygons or their string representations. An extension of turtle in-
terpretation to strings with brackets and the operation of bracketed
L-systems [109, 111] are described below.

Two new symbols are introduced to delimit a branch. They are
interpreted by the turtle as follows:

[Push the current state of the turtle onto a pushdownStack
operations stack. The information saved on the stack contains the

turtle’s position and orientation, and possibly other at-
tributes such as the color and width of lines being drawn.

] Pop a state from the stack and make it the current state
of the turtle. No line is drawn, although in general the
position of the turtle changes.

An example of an axial tree and its string representation are shown
in Figure 1.23.

Derivations in bracketed OL-systems proceed as in OL-systems with-2D structures
out brackets. The brackets replace themselves. Examples of two-
dimensional branching structures generated by bracketed OL-systems
are shown in Figure 1.24.

Figure 1.25 is an example of a three-dimensional bush-like structureBush-like
structure generated by a bracketed L-system. Production p1 creates three new

branches from an apex of the old branch. A branch consists of an
edge F forming the initial internode, a leaf L and an apex A (which
will subsequently create three new branches). Productions p2 and p3

1.6. Branching structures 25

a
n=5,δ=25.7◦
F
F→F[+F]F[-F]F

b
n=5,δ=20◦
F
F→F[+F]F[-F][F]

c
n=4,δ=22.5◦
F
F→FF-[-F+F+F]+

[+F-F-F]

d
n=7,δ=20◦
X
X→F[+X]F[-X]+X
F→FF

e
n=7,δ=25.7◦
X
X→F[+X][-X]FX
F→FF

f
n=5,δ=22.5◦
X
X→F-[[X]+X]+F[+FX]-X
F→FF

Figure 1.24: Examples of plant-like structures generated by bracketed OL-
systems. L-systems (a), (b) and (c) are edge-rewriting, while (d), (e) and
(f) are node-rewriting.

26 Chapter 1. Graphical modeling using L-systems

n=7, δ=22.5◦

ω : A
p1 : A → [&FL!A]/////’[&FL!A]///////’[&FL!A]
p2 : F → S ///// F
p3 : S → F L
p4 : L → [’’’∧∧{-f+f+f-|-f+f+f}]

Figure 1.25: A three-dimensional bush-like structure

specify internode growth. In subsequent derivation steps the internode
gets longer and acquires new leaves. This violates a biological rule
of subapical growth (discussed in detail in Chapter 3), but produces
an acceptable visual effect in a still picture. Production p4 specifies
the leaf as a filled polygon with six edges. Its boundary is formed
from the edges f enclosed between the braces { and } (see Chapter 5
for further discussion). The symbols ! and ′ are used to decrement
the diameter of segments and increment the current index to the color
table, respectively.

Another example of a three-dimensional plant is shown in Fig-Plant
with flowers ure 1.26. The L-system can be described and analyzed in a way similar

to the previous one.

1.6. Branching structures 27

n=5, δ=18◦

ω : plant
p1 : plant → internode + [plant + flower] − − //

[− − leaf] internode [+ + leaf] −
[plant flower] + + plant flower

p2 : internode → F seg [// & & leaf] [// ∧ ∧ leaf] F seg
p3 : seg → seg F seg
p4 : leaf → [’ { +f−ff−f+ | +f−ff−f }]
p5 : flower → [& & & pedicel ‘ / wedge //// wedge ////

wedge //// wedge //// wedge]
p6 : pedicel → FF
p7 : wedge → [‘ ∧ F] [{ & & & & −f+f | −f+f }]

Figure 1.26: A plant generated by an L-system

28 Chapter 1. Graphical modeling using L-systems

1.7 Stochastic L-systems

All plants generated by the same deterministic L-system are identical.
An attempt to combine them in the same picture would produce a
striking, artificial regularity. In order to prevent this effect, it is nec-
essary to introduce specimen-to-specimen variations that will preserve
the general aspects of a plant but will modify its details.

Variation can be achieved by randomizing the turtle interpretation,
the L-system, or both. Randomization of the interpretation alone has
a limited effect. While the geometric aspects of a plant — such as
the stem lengths and branching angles — are modified, the underly-
ing topology remains unchanged. In contrast, stochastic application
of productions may affect both the topology and the geometry of the
plant. The following definition is similar to that of Yokomori [162] and
Eichhorst and Savitch [35].

A stochastic OL-system is an ordered quadruplet Gπ = 〈V, ω, P, π〉.L-system
The alphabet V , the axiom ω and the set of productions P are defined
as in an OL-system (page 4). Function π : P → (0, 1], called the
probability distribution, maps the set of productions into the set of
production probabilities. It is assumed that for any letter a ∈ V , the
sum of probabilities of all productions with the predecessor a is equal
to 1.

We will call the derivation µ ⇒ ν a stochastic derivation in Gπ if forDerivation
each occurrence of the letter a in the word µ the probability of applying
production p with the predecessor a is equal to π(p). Thus, different
productions with the same predecessor can be applied to various occur-
rences of the same letter in one derivation step.

A simple example of a stochastic L-system is given below.Example

ω : F

p1 : F
.33→ F [+F]F [−F]F

p2 : F
.33→ F [+F]F

p3 : F
.34→ F [−F]F

The production probabilities are listed above the derivation symbol
→. Each production can be selected with approximately the same
probability of 1/3. Examples of branching structures generated by this
L-system with derivations of length 5 are shown in Figure 1.27. Note
that these structures look like different specimens of the same (albeit
fictitious) plant species.

A more complex example is shown in Figure 1.28. The field consistsFlower field
of four rows and four columns of plants. All plants are generated by a
stochastic modification of the L-system used to generate Figure 1.26.

1.7. Stochastic L-systems 29

Figure 1.27: Stochastic branching structures

Figure 1.28: Flower field

30 Chapter 1. Graphical modeling using L-systems

The essence of this modification is to replace the original production
p3 by the following three productions:

p′3 : seg
.33→ seg [// & & leaf] [// ∧∧ leaf] F seg

p′′3 : seg
.33→ seg F seg

p′′′3 : seg
.34→ seg

Thus, in any step of the derivation, the stem segment seg may either
grow and produce new leaves (production p′3), grow without producing
new leaves (production p′′3), or not grow at all (production p′′′3). All three
events occur with approximately the same probability. The resulting
field appears to consist of various specimens of the same plant species.
If the same L-system was used again (with different seed values for the
random number generator), a variation of this image would be obtained.

1.8 Context-sensitive L-systems

Productions in OL-systems are context-free; i.e. applicable regardlessContext in
string
L-systems

of the context in which the predecessor appears. However, production
application may also depend on the predecessor’s context. This effect is
useful in simulating interactions between plant parts, due for example to
the flow of nutrients or hormones. Various context-sensitive extensions
of L-systems have been proposed and studied thoroughly in the past
[62, 90, 128]. 2L-systems use productions of the form al < a > ar → χ,
where the letter a (called the strict predecessor) can produce word χ if
and only if a is preceded by letter al and followed by ar. Thus, letters
al and ar form the left and the right context of a in this production.
Productions in 1L-systems have one-sided context only; consequently,
they are either of the form al < a → χ or a > ar → χ. OL-systems,
1L-systems and 2L-systems belong to a wider class of IL-systems, also
called (k,l)-systems. In a (k,l)-system, the left context is a word of
length k and the right context is a word of length l.

In order to keep specifications of L-systems short, the usual notion
of IL-systems has been modified here by allowing productions with
different context lengths to coexist within a single system. Further-
more, context-sensitive productions are assumed to have precedence
over context-free productions with the same strict predecessor. Conse-
quently, if a context-free and a context-sensitive production both apply
to a given letter, the context-sensitive one should be selected. If no pro-
duction applies, this letter is replaced by itself as previously assumed
for OL-systems.

1.8. Context-sensitive L-systems 31

Figure 1.29: The predecessor of a context-sensitive tree production (a)
matches edge S in a tree T (b)

The following sample 1L-system makes use of context to simulate signal Signal
propagationpropagation throughout a string of symbols:

ω : baaaaaaaa
p1 : b < a → b
p2 : b → a

The first few words generated by this L-system are given below:

baaaaaaaa
abaaaaaaa
aabaaaaaa
aaabaaaaa
aaaabaaaa
· · ·

The letter b moves from the left side to the right side of the string.
A context-sensitive extension of tree L-systems requires neighbor Context in tree

L-systemsedges of the replaced edge to be tested for context matching. A prede-
cessor of a context-sensitive production p consists of three components:
a path l forming the left context, an edge S called the strict predecessor,
and an axial tree r constituting the right context (Figure 1.29). The
asymmetry between the left context and the right context reflects the
fact that there is only one path from the root of a tree to a given edge,
while there can be many paths from this edge to various terminal nodes.
Production p matches a given occurrence of the edge S in a tree T if l
is a path in T terminating at the starting node of S, and r is a subtree

32 Chapter 1. Graphical modeling using L-systems

of T originating at the ending node of S. The production can then be
applied by replacing S with the axial tree specified as the production
successor.

The introduction of context to bracketed L-systems is more difficultContext in
bracketed
L-systems

than in L-systems without brackets, because the bracketed string repre-
sentation of axial trees does not preserve segment neighborhood. Conse-
quently, the context matching procedure may need to skip over symbols
representing branches or branch portions. For example, Figure 1.29 in-
dicates that a production with the predecessor BC < S > G[H]M can
be applied to symbol S in the string

ABC[DE][SG[HI[JK]L]MNO],

which involves skipping over symbols [DE] in the search for left context,
and I[JK]L in the search for right context.

Within the formalism of bracketed L-systems, the left context can
be used to simulate control signals that propagate acropetally, i.e., from
the root or basal leaves towards the apices of the modeled plant, while
the right context represents signals that propagate basipetally, i.e., from
the apices towards the root. For example, the following 1L-system
simulates propagation of an acropetal signal in a branching structure
that does not grow:

#ignore : +−

ω : Fb[+Fa]Fa[−Fa]Fa[+Fa]Fa

p1 : Fb < Fa → Fb

Symbol Fb represents a segment already reached by the signal, while
Fa represents a segment that has not yet been reached. The #ignore
statement indicates that the geometric symbols + and − should be
considered as non-existent while context matching. Images representing
consecutive stages of signal propagation (corresponding to consecutive
words generated by the L-system under consideration) are shown in
Figure 1.30a.

The propagation of a basipetal signal can be simulated in a similar
way (Figure 1.30b):

#ignore : +−

ω : Fa[+Fa]Fa[−Fa]Fa[+Fa]Fb

p1 : Fa > Fb → Fb

1.8. Context-sensitive L-systems 33

Figure 1.30: Signal propagation in a branching structure: (a) acropetal, (b)
basipetal

The operation of context-sensitive L-systems is examined further using L-systems of
Hogeweg,
Hesper and
Smith

examples obtained by Hogeweg and Hesper [64]. In 1974, they pub-
lished the results of an exhaustive study of 3,584 patterns generated
by a class of bracketed 2L-systems defined over the alphabet {0,1}.
Some of these patterns had plant-like shapes. Subsequently, Smith
significantly improved the quality of the generated images using state-
of-the-art computer imagery techniques [136, 137]. Sample structures
generated by L-systems similar to those proposed by Hogeweg and Hes-
per are shown in Figure 1.31. The differences are related to the geo-
metric interpretation of the resulting strings. According to the original
interpretation, consecutive branches are issued alternately to the left
and right, whereas turtle interpretation requires explicit specification
of branching angles within the L-system.

34 Chapter 1. Graphical modeling using L-systems

Figure 1.31: Examples of branching structures generated using L-systems
based on the results of Hogeweg and Hesper [64]

1.8. Context-sensitive L-systems 35

a n=30,δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1[+F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 0
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

b n=30,δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 1
0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

c n=26, δ=25.75◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1
0 < 1 > 0 → 0
0 < 1 > 1 → 1[+F1F1]
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 0
1 < 1 > 1 → 0
* < - > * → +
* < + > * → -

d n=24, δ=25.75◦
#ignore: +-F
F0F1F1
0 < 0 > 0 → 1
0 < 0 > 1 → 0
0 < 1 > 0 → 0
0 < 1 > 1 → 1F1
1 < 0 > 0 → 1
1 < 0 > 1 → 1[+F1F1]
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

e n=26, δ=22.5◦
#ignore: +-F
F1F1F1
0 < 0 > 0 → 0
0 < 0 > 1 → 1[-F1F1]
0 < 1 > 0 → 1
0 < 1 > 1 → 1
1 < 0 > 0 → 0
1 < 0 > 1 → 1F1
1 < 1 > 0 → 1
1 < 1 > 1 → 0
* < + > * → -
* < - > * → +

Figure 1.31 (continued): L-systems of Hogeweg and Hesper

36 Chapter 1. Graphical modeling using L-systems

1.9 Growth functions

During the synthesis of a plant model it is often convenient to dis-Exponential
growth tinguish productions that specify the branching pattern from those

that describe elongation of plant segments. This separation can be
observed in some of the L-systems considered so far. For example, in
L-systems (d), (e) and (f) from Figure 1.24 the first productions cap-
ture the branching patterns, while the remaining productions, equal in
all cases to F → FF , describe elongation of segments represented by
sequences of symbols F . The number of letters F in a string χn orig-
inating from a single letter F is doubled in each derivation step, thus
the elongation is exponential, with length(χn) = 2n.

A function that describes the number of symbols in a word in termsBasic
properties of its derivation length is called a growth function. The theory of L-

systems contains an extensive body of results on growth functions [62,
127]. The central observation is that the growth functions of DOL-
systems are independent of the letter ordering in the productions and
derived words. Consequently, the relation between the number of letter
occurrences in a pair of words µ and ν, such that µ ⇒ ν, can be
conveniently expressed using matrix notation.

Let G = 〈V, ω, P 〉 be a DOL-system and assume that letters of
the alphabet V have been ordered, V = {a1, a2, . . . , am}. Construct a
square matrix Qm×m, where entry qij is equal to the number of occur-
rences of letter aj in the successor of the production with predecessor
ai. Let ak

i denote the number of occurrences of letter ai in the word
x generated by G in a derivation of length k. The definition of direct
derivation in a DOL-system implies that

[
ak

1 ak
2 · · · ak

m

]



q11 q12 · · · q1m

q21 q22 · · · q2m
...

qm1 qm2 · · · qmm


 =

[
ak+1

1 ak+1
2 · · · ak+1

m

]
.

This matrix notation is useful in the analysis of growth functions. For
example, consider the following L-system:

ω : a
p1 : a → ab
p2 : b → a

(1.2)

The relationship between the number of occurrences of letters a and b
in two consecutively derived words is

[
ak bk

] [
1 1
1 0

]
=

[
ak+1 bk+1

]

1.9. Growth functions 37

or
ak+1 = ak + bk = ak + ak−1

for k = 1, 2, 3, From the axiom it follows that a0 = 1 and
a1 = b0 = 0. Thus, the number of letters a in the strings gener-
ated by the L-system specified in equation (1.2) grows according to the
Fibonacci series: 1, 1, 2, 3, 5, 8, This growth function was imple-
mented by productions p2 and p3 in the L-system generating the bush
in Figure 1.25 (page 26) to describe the elongation of its internodes.

Polynomial growth functions of arbitrary degree can be obtained Polynomial
growthusing L-systems of the following form:

ω : a0

p1 : a0 → a0a1

p2 : a1 → a1a2

p3 : a2 → a2a3

p4 : a3 → a3a4
...

The matrix Q is given below:

Q =




1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·

...




Thus, for any i, k ≥ 1, the number ak
i of occurrences of symbol ai in

the string generated in a derivation of length k satisfies the equality

ak
i + ak

i+1 = ak+1
i+1 .

Taking into consideration the axiom, the distribution of letters ai as
a function of the derivation length is captured by the following table
(only non-zero terms are shown):

k ak
0 ak

1 ak
2 ak

3 ak
4 ak

5 ak
6 ak

7

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1

...

38 Chapter 1. Graphical modeling using L-systems

This table represents the Pascal triangle, thus for any k ≥ i ≥ 1 its
terms satisfy the following equality:

ak
i =

(
k
i

)
=

k(k − 1) · · · (k − i + 1)

1 · 2 · · · i

Consequently, the number of occurrences of letter ai as a function of
the derivation length k is expressed by a polynomial of degree i. By
identifying letter ai with the turtle symbol F , it is possible to model in-
ternode elongation expressed by polynomials of arbitrary degree i ≥ 0.
This observation was generalized by Szilard [140], who developed an al-
gorithm for constructing a DOL-system with growth functions specified
by any positive, nondecreasing polynomials with integer coefficients [62,
page 276].

The examples of growth functions considered so far include expo-Characterization
nential and polynomial functions. Rozenberg and Salomaa [127, pages
30–38] show that, in general, the growth function fG(n) of any DOL-
system G = 〈V, ω, P 〉 is a combination of polynomial and exponential
functions:

fG(n) =
s∑

i=1

Pi(n)ρn
i for n ≥ n0, (1.3)

where Pi(n) denotes a polynomial with integer coefficients, ρi is a non-
negative integer, and n0 is the total number of letters in the alphabet
V . Unfortunately, many growth processes observed in nature cannot be
described by equation (1.3). Two approaches are then possible within
the framework of the theory of L-systems.

The first is to extend the size n0 of the alphabet V , so that theSigmoidal
growth growth process of interest will be captured by the initial derivation

steps, ω = µ0 ⇒ µ1 ⇒ · · · ⇒ µn0 , before equation (1.3) starts to apply.
For example, the L-system

ω : a0

pi : ai → ai+1b0 for i < k
pk+j : bj → bj+1F for j < l

(1.4)

over the alphabet V = {a0, a1, ..., ak}∪{b0, b1, ..., bl}∪{F} can be used
to approximate a sigmoidal elongation of a segment represented by a
sequence of symbols F (Figure 1.32). The term sigmoidal refers to a
function with a plot in the shape of the letter S. Such functions are
commonly found in biological processes [143], with the initial part of
the curve representing the growth of a young organism, and the latter
part corresponding to the organism close to its final size.

The second approach to the synthesis of growth functions out-
side the class captured by equation (1.3) is to use context-sensitiveSquare-root

growth L-systems. For example, the following 2L-system has a growth func-
tion given by fG(n) =
√n� + 4, where
x� is the floor function.

1.9. Growth functions 39

Figure 1.32: A sigmoidal growth function implemented using the L-system
in equation (1.4), for k = l = 20

ω : XFuFaX
p1 : Fu < Fa > Fa → Fu

p2 : Fu < Fa > X → FdFa

p3 : Fa < Fa > Fd → Fd

p4 : X < Fa > Fd → Fu

p5 : Fu → Fa

p6 : Fd → Fa

(1.5)

The operation of this L-system is illustrated in Figure 1.33. Produc-
tions p1 and p3, together with p5 and p6, propagate symbols Fu and Fd

up and down the string of symbols µ. Productions p2 and p4 change the
propagation direction, after symbol X marking a string end has been
reached by Fu or Fd, respectively. In addition, p2 extends the string
with a symbol Fa. Thus, the number of derivation steps increases by
two between consecutive applications of production p2. As a result,
string extension occurs at derivation steps n expressed by the square
of the string length, which yields the growth function
√n� + 4.

In practice it is often difficult, if not impossible, to find L-systems Limitations
with the required growth functions. Vitányi [153] illustrates this by
referring to sigmoidal curves:

If we want to obtain sigmoidal growth curves with the
original L-systems then not even the introduction of cell
interaction can help us out. In the first place, we end up
constructing quite unlikely flows of messages through the
organism, which are more suitable to electronic computers,
and in fact give the organism universal computing power.
Secondly, and this is more fundamental, we can not obtain

40 Chapter 1. Graphical modeling using L-systems

Figure 1.33: Square-root growth implemented using the L-system specified
in equation (1.5)

growth which, always increasing the size of the organism,
tends towards stability in the limit. The slowest increasing
growth we can obtain by allowing cell interaction is loga-
rithmic and thus can not at all account for the asymptotic
behavior of sigmoidal growth functions.

In the next section we present an extension of L-systems that makes
it possible to avoid this problem by allowing for explicit inclusion of
growth functions into L-system specifications.

1.10 Parametric L-systems

Although L-systems with turtle interpretation make it possible to gen-Motivation
erate a variety of interesting objects, from abstract fractals to plant-like
branching structures, their modeling power is quite limited. A major
problem can be traced to the reduction of all lines to integer multi-
ples of the unit segment. As a result, even such a simple figure as an
isosceles right-angled triangle cannot be traced exactly, since the ratio
of its hypotenuse length to the length of a side is expressed by the irra-
tional number

√
2. Rational approximation of line length provides only

a limited solution, because the unit step must be the smallest common

�
�

�
��

1

1

√
2

denominator of all line lengths in the modeled structure. Consequently,
the representation of a simple plant module, such as an internode, may
require a large number of symbols. The same argument applies to an-
gles. Problems become even more pronounced while simulating changes
to the modeled structure over time, since some growth functions can-
not be expressed conveniently using L-systems. Generally, it is difficult

1.10. Parametric L-systems 41

to capture continuous phenomena, since the obvious technique of dis-
cretizing continuous values may require a large number of quantization
levels, yielding L-systems with hundreds of symbols and productions.
Consequently, model specification becomes difficult, and the mathe-
matical beauty of L-systems is lost.

In order to solve similar problems, Lindenmayer proposed that nu-
merical parameters be associated with L-system symbols [83]. He illus-
trated this idea by referring to the continuous development of branching
structures and diffusion of chemical compounds in a nonbranching fil-
ament of Anabaena catenula. Both problems were revisited in later
papers [25, 77]. A definition of parametric L-systems was formulated
by Prusinkiewicz and Hanan [113] and is presented below.

1.10.1 Parametric OL-systems

Parametric L-systems operate on parametric words, which are strings Parametric
wordsof modules consisting of letters with associated parameters. The let-

ters belong to an alphabet V , and the parameters belong to the set
of real numbers
. A module with letter A ∈ V and parameters
a1, a2, ..., an ∈
 is denoted by A(a1, a2, ..., an). Every module belongs
to the set M = V ×
∗, where
∗ is the set of all finite sequences of pa-
rameters. The set of all strings of modules and the set of all nonempty
strings are denoted by M∗ = (V ×
∗)∗ and M+ = (V ×
∗)+, respec-
tively.

The real-valued actual parameters appearing in the words corre- Expressions
spond with formal parameters used in the specification of L-system
productions. If Σ is a set of formal parameters, then C(Σ) denotes a
logical expression with parameters from Σ, and E(Σ) is an arithmetic
expression with parameters from the same set. Both types of expres-
sions consist of formal parameters and numeric constants, combined
using the arithmetic operators +, −, ∗, /; the exponentiation operator
∧, the relational operators <, >, =; the logical operators !, &, | (not,
and, or); and parentheses (). Standard rules for constructing syntac-
tically correct expressions and for operator precedence are observed.
Relational and logical expressions evaluate to zero for false and one for
true. A logical statement specified as the empty string is assumed to
have value one. The sets of all correctly constructed logical and arith-
metic expressions with parameters from Σ are noted C(Σ) and E(Σ).

A parametric OL-system is defined as an ordered quadruplet G = Parametric
OL-system〈V, Σ, ω, P 〉, where

• V is the alphabet of the system,

• Σ is the set of formal parameters,

• ω ∈ (V ×
∗)+ is a nonempty parametric word called the axiom,

• P ⊂ (V ×Σ∗)×C(Σ)× (V ×E(Σ))∗ is a finite set of productions.

42 Chapter 1. Graphical modeling using L-systems

The symbols : and → are used to separate the three components of a
production: the predecessor, the condition and the successor. For exam-
ple, a production with predecessor A(t), condition t > 5 and successor
B(t + 1)CD(t ∧ 0.5, t − 2) is written as

A(t) : t > 5 → B(t + 1)CD(t ∧ 0.5, t − 2). (1.6)

A production matches a module in a parametric word if the followingDerivation
conditions are met:

• the letter in the module and the letter in the production prede-
cessor are the same,

• the number of actual parameters in the module is equal to the
number of formal parameters in the production predecessor, and

• the condition evaluates to true if the actual parameter values are
substituted for the formal parameters in the production.

A matching production can be applied to the module, creating a string
of modules specified by the production successor. The actual parame-
ter values are substituted for the formal parameters according to their
position. For example, production (1.6) above matches a module A(9),
since the letter A in the module is the same as in the production pre-
decessor, there is one actual parameter in the module A(9) and one
formal parameter in the predecessor A(t), and the logical expression
t > 5 is true for t = 9. The result of the application of this production
is a parametric word B(10)CD(3, 7).

If a module a produces a parametric word χ as the result of a
production application in an L-system G, we write a �→ χ. Given a
parametric word µ = a1a2...am, we say that the word ν = χ1χ2...χm

is directly derived from (or generated by) µ and write µ =⇒ ν if and
only if ai �→ χi for all i = 1, 2, ...,m. A parametric word ν is generated
by G in a derivation of length n if there exists a sequence of words
µ0, µ1, ..., µn such that µ0 = ω, µn = ν and µ0 =⇒ µ1 =⇒ ... =⇒ µn.

An example of a parametric L-system is given below.Example

ω : B(2)A(4, 4)
p1 : A(x, y) : y <= 3 → A(x ∗ 2, x + y)
p2 : A(x, y) : y > 3 → B(x)A(x/y, 0)
p3 : B(x) : x < 1 → C
p4 : B(x) : x >= 1 → B(x − 1)

(1.7)

As in the case of non-parametric L-systems, it is assumed that a module
replaces itself if no matching production is found in the set P . The
words obtained in the first few derivation steps are shown in Figure 1.34.

1.10. Parametric L-systems 43

Figure 1.34: The initial sequence of strings generated by the parametric
L-system specified in equation (1.7)

1.10.2 Parametric 2L-systems

Productions in parametric OL-systems are context-free, i.e., applicable
regardless of the context in which the predecessor appears. A context-
sensitive extension is necessary to model information exchange between
neighboring modules. In the parametric case, each component of the
production predecessor (the left context, the strict predecessor and the
right context) is a parametric word with letters from the alphabet V
and formal parameters from the set Σ. Any formal parameters may
appear in the condition and the production successor.

A sample context-sensitive production is given below: Example

A(x) < B(y) > C(z) : x + y + z > 10 → E((x + y)/2)F ((y + z)/2)

It can be applied to the module B(5) that appears in a parametric word

· · ·A(4)B(5)C(6) · · · (1.8)

since the sequence of letters A,B,C in the production and in parametric
word (1.8) are the same, the numbers of formal parameters and actual
parameters coincide, and the condition 4 + 5 + 6 > 10 is true. As a
result of the production application, the module B(5) will be replaced
by a pair of modules E(4.5)F (5.5). Naturally, the modules A(4) and
C(6) will be replaced by other productions in the same derivation step.

Parametric 2L-systems provide a convenient tool for expressing de- Anabaena with
heterocystsvelopmental models that involve diffusion of substances throughout an

organism. A good example is provided by an extended model of the
pattern of cells observed in Anabaena catenula and other blue-green
bacteria [99]. This model was proposed by de Koster and Linden-
mayer [25].

44 Chapter 1. Graphical modeling using L-systems

#define CH 900 /* high concentration */
#define CT 0.4 /* concentration threshold */
#define ST 3.9 /* segment size threshold */
#include H /* heterocyst shape specification */
#ignore f ∼ H

ω : -(90)F(0,0,CH)F(4,1,CH)F(0,0,CH)

p1 : F(s,t,c) : t=1 & s>=6 →
F(s/3*2,2,c)f(1)F(s/3,1,c)

p2 : F(s,t,c) : t=2 & s>=6 →
F(s/3,2,c)f(1)F(s/3*2,1,c)

p3 : F(h,i,k) < F(s,t,c) > F(o,p,r) : s>ST|c>CT →
F(s+.1,t,c+0.25*(k+r-3*c))

p4 : F(h,i,k) < F(s,t,c) > F(o,p,r) : !(s>ST|c>CT) →
F(0,0,CH) ∼ H(1)

p5 : H(s) : s<3 → H(s*1.1)

L-system 1.1: Anabaena catenula

Generally, the bacteria under consideration form a nonbranching fila-
ment consisting of two classes of cells: vegetative cells and heterocysts.
Usually, the vegetative cells divide and produce two daughter vegeta-
tive cells. This mechanism is captured by the L-system specified in
equation (1.1) and Figure 1.4 (page 5). However, in some cases the
vegetative cells differentiate into heterocysts. Their distribution forms
a well-defined pattern, characterized by a relatively constant number
of vegetative cells separating consecutive heterocysts. How does the
organism maintain constant spacing of heterocysts while growing? The
model explains this phenomenon using a biologically well-motivated
hypothesis that heterocyst distribution is regulated by nitrogen com-
pounds produced by the heterocysts, transported from cell to cell across
the filament, and decayed in the vegetative cells. If the compound’s
concentration in a young vegetative cell falls below a specific level, this
cell differentiates into a heterocyst (L-system 1.1).

The #define statements assign values to numerical constants used
in the L-system. The #include statement specifies the shape of a het-
erocyst (a disk) by referring to a library of predefined shapes (see Sec-
tion 5.1). Cells are represented by modules F (s, t, c), where s stands
for cell length, t is cell type (0 - heterocyst, 1 and 2 - vegetative types1),

1The model of Anabaena introduced in Section 1.2 distinguished between four
types of cells: ar, br, al and bl. Cells b do not divide and can be considered as young
forms of the corresponding cells a. Thus, the vegetative type 1 considered here
embraces cells ar and br, while type 2 embraces al and bl. The formal relationship
between the four-cell and two-cell models is further discussed in Chapter 6.

1.10. Parametric L-systems 45

Figure 1.35: Development of Anabaena catenula with heterocysts, simulated
using parametric L-system 1.1

and c represents the concentration of nitrogen compounds. Productions
p1 and p2 describe division of the vegetative cells. They each create two
daughter cells of unequal length. The difference between cells of type
1 and 2 lies in the ordering of the long and short daughter cells. Pro-
duction p3 captures the processes of transportation and decay of the
nitrogen compounds. Their concentration c is related to the concen-
tration in the neighboring cells k and r, and changes in each derivation
step according to the formula

c′ = c + 0.25(k + r − 3 ∗ c).

Production p4 describes differentiation of a vegetative cell into a hete-
rocyst. The condition specifies that this process occurs when the cell
length does not exceed the threshold value ST = 3.9 (which means
that the cell is young enough), and the concentration of the nitrogen
compounds falls below the threshold value CT = 0.4. Production p5

describes the subsequent growth of the heterocyst.
Snapshots of the developmental sequence of Anabaena are given

in Figure 1.35. The vegetative cells are shown as rectangles, colored
according to the concentration of the nitrogen compounds (white means
low concentration). The heterocysts are represented as red disks. The
values of parameters CH, CT and ST were selected to provide the

46 Chapter 1. Graphical modeling using L-systems

correct distribution of the heterocysts, and correspond closely to the
values reported in [25]. The mathematical model made it possible to
estimate these parameters, although they are not directly observable.

1.10.3 Turtle interpretation of parametric words

If one or more parameters are associated with a symbol interpreted by
the turtle, the value of the first parameter controls the turtle’s state.
If the symbol is not followed by any parameter, default values specified
outside the L-system are used as in the non-parametric case. The basic
set of symbols affected by the introduction of parameters is listed below.

F (a) Move forward a step of length a > 0. The position of the
turtle changes to (x′, y′, z′), where x′ = x + a�Hx, y′ = y + a�Hy

and z′ = z + a�Hz. A line segment is drawn between points
(x, y, z) and (x′, y′, z′).

f(a) Move forward a step of length a without drawing a line.

+(a) Rotate around �U by an angle of a degrees. If a is positive, the
turtle is turned to the left and if a is negative, the turn is to
the right.

&(a) Rotate around �L by an angle of a degrees. If a is positive,
the turtle is pitched down and if a is negative, the turtle is
pitched up.

/(a) Rotate around �H by an angle of a degrees. If a is positive, the
turtle is rolled to the right and if a is negative, it is rolled to
the left.

It should be noted that symbols +, &, ∧, and / are used both as
letters of the alphabet V and as operators in logical and arithmetic
expressions. Their meaning depends on the context.

The following examples illustrate the operation of parametric L-Row of trees
systems with turtle interpretation. The first L-system is a coding of
a Koch construction generating a variant of the snowflake curve (Fig-
ure 1.1 on page 2). The initiator (production predecessor) is the hy-
potenuse AB of a right triangle ABC (Figure 1.36). The first and the
fourth edge of the generator subdivide AB into segments AD and DB,
while the remaining two edges traverse the altitude CD in opposite di-
rections. From elementary geometry it follows that the lengths of these
segments satisfy the equations

q = c − p and h =
√

pq.

The edges of the generator can be associated with four triangles that
are similar to ABC and tile it without gaps. According to the relation-
ship between curve construction by edge rewriting and planar tilings

1.10. Parametric L-systems 47

Figure 1.36: Construction of the generator for a “row of trees.” The edges
are associated with triangles indicated by ticks.

(Section 1.4.1), the generated curve will approximately fill the triangle
ABC. The corresponding L-system is given below:

#define c 1
#define p 0.3
#define q c − p
#define h (p ∗ q) ∧ 0.5

ω : F (1)
p1 : F (x) → F (x ∗ p) + F (x ∗ h) −−F (x ∗ h) + F (x ∗ q)

The resulting curve is shown in Figure 1.37a. In order to better
visualize its structure, the angle increment has been set to 86◦ instead
of 90◦. The curve fills different areas with unequal density. This results
from the fact that all edges, whether long or short, are replaced by
the generator in every derivation step. A modified curve that fills the
underlying triangle in a more uniform way is shown in Figure 1.37b. It
was obtained by delaying the rewriting of shorter segments with respect
to the longer ones, as specified by the following L-system.

ω : F (1, 0)
p1 : F (x, t) : t = 0 → F (x ∗ p, 2) + F (x ∗ h, 1)−

−F (x ∗ h, 1) + F (x ∗ q, 0)
p2 : F (x, t) : t > 0 → F (x, t − 1)

The next example makes use of node rewriting (Section 1.4.2). The Branching
structureconstruction recursively subdivides a rectangular tile ABCD into two

tiles, AEFD and BCFE, similar to ABCD (Figure 1.38). The lengths
of the edges form the proportion

a

b
=

b
1
2
a
,

48 Chapter 1. Graphical modeling using L-systems

Figure 1.37: Two curves suggesting a “row of trees.” Curve (b) is from [95,
page 57].

which implies that b = a/
√

2. Each tile is associated with a single-point
frame lying in the tile center. The tiles are connected by a branching
line specified by the following L-system:

#define R 1.456
ω : A(1)
p1 : A(s) → F (s)[+A(s/R)][−A(s/R)]

(1.9)

The ratio of branch sizes R slightly exceeds the theoretical value of√
2. As a result, the branching structure shown in Figure 1.39 is self-

avoiding. The angle increment was set arbitrarily to δ = 85◦.
The L-system in equation (1.9) operates by appending segments

of decreasing length to the structures obtained in previous derivation
steps. Once a segment has been incorporated, its length does not
change. A structure with identical proportions can be obtained by

1.10. Parametric L-systems 49

Figure 1.38: Tiling associated with a space-filling branching pattern

Figure 1.39: A branching pattern generated by the L-system specified in
equation (1.9)

50 Chapter 1. Graphical modeling using L-systems

Figure 1.40: Initial sequences of figures generated by the L-systems specified
in equations (1.9) and (1.10)

appending segments of constant length and increasing the lengths of
previously created segments by constant R in each derivation step. The
corresponding L-system is given below.

ω : A
p1 : A → F (1)[+A][−A]
p2 : F (s) → F (s ∗ R)

(1.10)

The initial sequence of structures obtained by both L-systems are
compared in Figure 1.40. Sequence (a) emphasizes the fractal character
of the resulting structure. Sequence (b) suggests the growth of a tree.
The next two chapters show that this is not a mere coincidence, and
the L-system specified in equation (1.10) is a simple, but in principle
correct, developmental model of a sympodial branching pattern found
in many herbaceous plants and trees.

