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Abstract.  Lindenmayer systems (L-systems) provide a useful framework for modelling the development of mul-
ticellular structures and organisms. The parametric extension of L-systems allows for incorporating molecular-level 
processes into the models. Until now, the dynamics of these processes has been expressed using differential equa-
tions, implying continuously valued concentrations of the substances involved. This assumption is not satisfied, 
however, when the numbers of molecules are small. A further extension that accounts for the stochastic effects 
arising in this case is thus needed. We integrate L-systems and the Gillespie’s Stochastic Simulation Algorithm to 
simulate stochastic processes in fixed and developing linear structures. We illustrate the resulting formalism with 
stochastic implementations of diffusion-decay, reaction-diffusion and auxin-transport-driven morphogenetic pro-
cesses. Our method and software can be used to simulate molecular and higher-level spatially explicit stochastic 
processes in static and developing structures, and study their behaviour in the presence of stochastic perturbations.

Keywords:   Auxin-based patterning; Gillespie’s Stochastic Simulation Algorithm; L-system; leaf development; 
Lotka–Volterra equations; reaction-diffusion.

Introduction
L-systems are a powerful formalism for modelling the 
development of growing linear and branching struc-
tures, from basal filamentous organisms to trees and 
entire plant ecosystems (Prusinkiewicz and Lindenmayer 
1990; Lane and Prusinkiewicz 2002). The introduction 
of parameters into L-systems (Lindenmayer 1974) has 
made it possible to capture genetic regulatory mech-
anisms and physiological processes that affect devel-
opment by using a continuous-level representation of 
the substances involved (Coen et  al. 2004; Allen et  al. 
2005; Buck-Sorlin et al. 2005; Prusinkiewicz et al. 2009). 
However, in many biological processes the numbers of 
molecules are relatively low, and the assumption of con-
tinuity of concentration is not satisfied (McAdams and 

Arkin 1997; Elowitz et al. 2002; Rao et al. 2002). In these 
cases individual molecules must be considered, and al-
gorithms that simulate stochastic fluctuations in mole-
cule numbers are needed.

Stochastic simulation of reaction kinetics was pi-
oneered by Gillespie (1976, 1977). The essence of his 
method is a discrete-event simulation of reactions be-
tween individual molecules in a spatially homogeneous, 
well-mixed system. To simulate heterogeneous systems, 
Gillespie (1976) proposed an extension, in which mol-
ecules diffuse between subvolumes in compartmental-
ized space. Spicher et al. (2008) incorporated Gillespie’s 
algorithm into P-systems (Păun and Rozenberg 2002), 
where the modelled system, such as a cell, is struc-
tured into a hierarchy of compartments enclosed by 
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membranes. Lloyd-Price et  al. (2012) reported further 
advancements in this direction.

Here we extend Gillespie’s algorithm to compartmen-
talized linear structures by combining it with L-systems. 
This allows for a concise specification of processes 
involving numerous compartments and provides a con-
venient, well-defined computational framework for the 
stochastic modelling of biochemical processes taking 
place in both static and developing structures. We il-
lustrate the strength of Gillespie-Lindenmayer systems 
(Gillespie-L systems) using examples of morphogenetic 
processes that include reaction-diffusion and auxin-
driven patterning. In each case, we highlight the impact 
that the number of molecules has on the characteristics 
of the solution. We also show that—as expected—the 
stochastic solutions converge to their continuous coun-
terparts as the number of molecules increases.

Gillespie L-systems
As the stepping stone for constructing Gillespie 
L-systems, let us first review its constituent compo-
nents: Gillespie’s Stochastic Simulation Algorithm and 
Lindenmayer systems.

Gillespie’s Stochastic Simulation Algorithm
Consider N chemical substances S1, . . . , SN that interact 
via M reactions R1, . . . ,RM. The system state is described 
by the vector X = (X1, . . . ,XN), where each entry Xk is 
the number of molecules of substance Sk at time t. The 
probability that a particular reaction Rj ∈ (R1, . . . ,RM) will 
occur in the infinitesimal time interval [t, t+ dt) is given 
by the product αj(X)dt, where the term αj(X) is called a 
propensity function. Under the assumption of a uniform 
distribution of molecules in space, this function is the 
product of the number of distinct combinations of re-
acting molecules, hj(X), and the stochastic reaction pa-
rameter, cj, which depends on the type of reaction and 
temperature, and is related to the reaction rate kj in 
chemical kinetics (Gillespie 1976, 1977, 2007) (Table 1).

The evolution of the system over time is simulated by 
iterating the following steps:

	1.	 determine the delay τ  (inter-reaction time) with 
which the next reaction will take place, and the index 
of the next reaction j ∈ (1, . . . ,M),

	2.	 modify the state X, taking into account the reactants 
removed from the system and products added to the 
system by reaction Rj, and

	3.	 advance simulation time t by τ .

To generate one random pair (τ , j), Gillespie proposed 
two methods: the first-reaction method and the direct 
method. In the first reaction method, a putative time τj′, 
j′ ∈ (1, . . . ,M), is generated for each reaction, and the re-
action with the smallest time, τj , is chosen. In the direct 
method values for τ  and j are generated according to a 
joint probability function of τ  and j. The direct method 
is more efficient than the first reaction method because 
fewer random numbers must be generated per iteration 
step. Consequently, we only consider the direct method.

Gillespie showed that the time between two reactions 
can be described by an exponential distribution. First, the 
combined propensity of all possible reactions is computed:

α0(X) =
M∑
j′=1

αj′(X).� (1)

The inter-reaction time τ  is then calculated as an expo-
nentially distributed random variable with a mean value 
of 1/α0(X). The index of the next reaction is described 
by a discrete probability distribution, where αj(X)/α0(X) 
is the probability that the next reaction is Rj. The inter-
reaction time τ  and the next reaction Rj are then gen-
erated according to these probability distributions using 
the inversion method (Gillespie 1976). Specifically, given 
two independent random numbers r1 and r2, generated 
with uniform distribution in the interval (0, 1], the inter-
reaction time is obtained using the formula

τ =
1
α0

ln
1
r1
,� (2)

Table 1.  Terms involved in the calculation of reaction propensities for several reaction types. Column h: the number of distinct molecular 
combinations of reactants S1 and S2 as a function of the number or their molecules, X1 and X2. Column c: the stochastic reaction parameter 
as a function of the reaction rate k. Symbol ∅ denotes an external source of products. Parameter Ω is the volume in which the reactions take 
place.

Reaction name  Reaction h c

Source ∅ k→ products 1 kΩ
 

Unimolecular S1
k→ products X1 k 

Bimolecular S1 + S2
k→ products X1X2 k/Ω 

Trimolecular S1 + 2S2
k→ products X1X2(X2 − 1)/2 2k/Ω2 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article-abstract/1/1/diz009/5614990 by U

niversity of C
algary user on 02 D

ecem
ber 2019



Cieslak and Prusinkiewicz – Gillespie-Lindenmayer systems for stochastic simulation

3in silico Plants  https://academic.oup.com/insilicoplants	 © The Author(s) 2019

and the reaction index j is determined by solving the 
equation

j−1∑
j′=1

αj′ < r2α0 ≤
j∑

j′=1

αj′ .� (3)

To incorporate spatial inhomogeneities into simulations 
of chemical systems, Gillespie (1976) proposed an ex-
tension to the basic Stochastic Simulation Algorithm, 
in which the volume V  is divided into n subvolumes 
(also referred to as compartments or components) Vi 
(i = 1, 2, . . . ,n). Two basic ideas underly this extension:

	•	 Propensities of reactions taking place in different 
subvolumes are calculated individually for each 
subvolume. Thus, instead of a reaction propensities 
αj , the algorithm calculates propensity αij of reaction 
j taking place in subvolume i.

	•	 Transport of a molecule from subvolume i to its neigh-
bour ı̂  is treated as a unimolecular reaction that re-
moves a molecule from subvolume i and deposits it in 
subvolume ̂ı .

The inter-reaction time τ , the index j of the next reac-
tion or transport event, and the index i of the subvolume 
where the next event occurs—or subvolume pair (i, ı̂  )  
for transport events—are then generated using 
Equations (1–3), in which the summation extends to all 
pairs (i, j) of reaction events and triplets (i, ̂ı , j ) of trans-
port events. Formal details are presented by Stundzia 
and Lumsden (1996).

With the extension to subvolumes, Gillespie’s algo-
rithm can simulate the time evolution of a spatially ex-
plicit system in which the partition into subvolumes is 
fixed, while the molecules within each subvolume are 
distributed uniformly. To model the development of mul-
ticellular organisms, however, it is necessary to consider 
spatial structures in which the number of subvolumes 
and reactions associated with them may change over 
time (e.g. following cell division). We integrate Gillespie’s 
algorithm with L-systems to provide a mechanism in 
which both fixed and developing structures can be sim-
ulated easily.

L-systems
Parallel rewriting systems, subsequently called 
L-systems, were introduced by Lindenmayer (1968) to 
specify, model and reason about the development of 
multicellular structures (whole organisms or their parts) 
with filamentous or branching topology. A  structure is 
represented by a string of symbols (letters) that corre-
spond to its individual components, such as cells, higher 
level architectural units or compartments resulting from 
a discretization of a continuous space. The evolution 

of the structure state over time is characterized by re-
writing rules, also called productions, which specify how 
a predecessor symbol is replaced by zero, one or more 
successor symbol(s) in the string. For example, the rule 
A→ BC  may be used to represent the division of cell A 
into two daughter cells, B and C. The rules are applied 
in parallel to the entire string, to capture the simulta-
neous progress of time in all parts of the organism 
(Prusinkiewicz and Lindenmayer 1990).

Parametric L-systems associate numerical param-
eters with the symbols (Lindenmayer 1974; Prusinkiewicz 
and Lindenmayer 1990; Prusinkiewicz et  al. 2018), for 
instance to quantify the chemical substances in each 
component of the structure. For example, the rule 
C(z) → C(z− µzz∆t) describes the decay of substance Z 
in cell C, where z is the concentration of Z at time t, µz  is 
the decay rate and ∆t is the time step.

A symbol with the associated parameters is referred 
to as a module. Communication between modules and 
the transport of substances within the structure can be 
modelled using context-sensitive productions, in which 
the production successor depends not only on the pred-
ecessor module, but also on its neighbours or context. 
Notationally, the context is separated from the prede-
cessor by symbols < and >. For example, production

W(JL) < C(a) >W(JR) → C(a+ (JL − JR)∆t)� (4)

specifies that concentration a of some substance in cell 
C changes according to the fluxes JL and JR through walls 
W on both sides of C. Context-sensitive productions fa-
cilitate modelling of multicellular structures, because 
they eliminate the need to index cells, and then reindex 
them as the structure develops and neighbourhood re-
lations change.

We will specify L-systems using the L+C modelling 
language implemented in the simulation program lpfg, 
which augments the expressive power of L-systems by 
combining them with C++ (Karwowski 2002; Karwowski 
and Prusinkiewicz 2003; Prusinkiewicz et al. 2007, 2018). 
L+C is relatively self-explanatory; for example, the 
context-sensitive production (4) is written in L+C as

In a complete L+C program, symbols representing com-
ponents of the structure are declared using the keyword 
module, with the parameter types listed in parentheses. 
The initial string is specified after the keyword axiom. 
Predefined keywords Start and End indicate optional 
blocks of C++ statements executed at the beginning or 
end of the simulation, for example to initialize variables 
used in the simulation or report statistics gathered 
during its execution. Likewise, StartEach, and EndEach 
indicate statements executed at the beginning or end 
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of each simulation step. Following these blocks, the 
L-system productions are listed. A  production may 
have more than one successor, each preceded by the 
produce keyword. In the original version of L+C the ap-
plicable successor is selected using a conditional state-
ment; in Gillespie L-systems the selection mechanism 
is extended to include the stochastic mechanism de-
scribed in the next section. The set of all productions 
can be partitioned into subsets called groups by the 
statement group: id (Prusinkiewicz et al. 2007), inter-
spersed between productions. This statement assigns 
a numerical identifier id to all productions following it 
in the production list, until the next group: id state-
ment occurs or the production list ends. The group: 
id statements are used in conjunction with the func-
tion UseGroup(id), which is typically called within the 
StartEach block and specifies which group of produc-
tions should be used in the forthcoming simulation 
step. The notion of groups thus increases the flexibility 
of L-system programming by making it possible to em-
ploy different production groups in different simulation 
steps.

Integration of Gillespie’s algorithm and L-systems
To combine Gillespie’s algorithm and L-systems, we 
introduced the notion of a Gillespie group of productions, 
identified by the keyword ggroup. A  Gillespie L-system 
may include both ‘ordinary’ and Gillespie groups, but only 
one group is active in any simulation step. Productions in 
an ordinary group are applied to all modules in the string 
in parallel, consistent with the standard definition of 
L-systems. In contrast, a single module in the string and 
a single production or production successor are selected 
in a simulation step using a Gillespie group. This selec-
tion is effected using Gillespie’s Stochastic Simulation 
Algorithm extended to subvolumes—identified with 
modules—with probabilities controlled by the expres-
sions specified after the propensity keyword associ-
ated with each successor. As the selected production 
is applied, the current simulation time is advanced by 
the inter-reaction interval. The current time (integrated 
from the beginning of the simulation) can be accessed 
using the predefined L+C function GillespieTime(). 
Time management and event scheduling may require 
attention in simulations combining stochastic and de-
terministic productions; an example is discussed in 
Auxin-driven morphogenesis section (Program 4b).

The following example illustrates the method. 
Consider substances A and B decaying in two types of 
modules, C and D, declared as follows:

The decay events are defined by productions in the 
Gillespie group (although it is the only group, it must be 
selected explicitly using the UseGroup(1) statement):

In general, the propensity of each reaction is the 
product of a stochastic reaction parameter and the 
number of combinations of the reacting molecules. As 
decay is a unimolecular reaction, the stochastic reac-
tion parameter is equal to the reaction (decay) rate µ, 
and the numbers of combinations are equal to the num-
bers of reactant molecules (Table 1). Suppose the rates 
are µa = 0.1 and µb = 0.2, and the current state of the 
system is described by the string of four modules

A simulation step begins with the simulator (lpfg) calcu-
lating the propensity of each applicable reaction in each 
individual module, producing the results shown in Table 2. 
On this basis, the simulator stochastically selects a single 
reaction taking place in a single module using Equation (3). 
For instance, the probability of selecting reaction A→ ∅ in 
module C is 0.42.0 = 0.2, the probability of selecting reaction 
B→ ∅ in module C is also 0.42.0 = 0.2 and the probability of 
selecting reaction A→ ∅ in the last module D is 0.52.0 = 0.25.  
Once the reaction and module have been selected, the 
simulator decrements the number of molecules of the 
reacting substance in the affected module by one, as 
specified by the production successor, and determines sto-
chastically the inter-reaction time using Equation (2) with 
α0 = 2.0. The next simulation step can then be performed, 
beginning with the recalculation of propensities. The entire 
simulation run is a sequence of such steps.

Petri nets
As the reactions become more complicated, it is con-
venient to represent them graphically using stochastic 
Petri nets (Goss and Peccoud 1998). We use them in this 

Table 2.  Example of propensity calculations for two decay reactions 
in a string of four modules.

C(4, 2) D(3) D(4) D(5)
∑

A0.1→∅ 4 · 0.1 3 · 0.1 4 · 0.1 5 · 0.1 1.6

B0.2→∅ 2 · 0.2 — — — 0.4
∑

0.8 0.3 0.4 0.5 2.0
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paper to visually complement textual specifications of 
reaction systems. A Petri net is a directed graph with two 
types of nodes: places, drawn as circles, and transitions, 
drawn as rectangles (Fig. 1). In the context of chemical 
processes, places represent substances, and transitions 
represent reactions or movement of molecules between 
components. The nodes are connected by directed arcs 
(arrows), such that the arcs pointing from places to 
transitions denote the reactants, and arcs pointing from 
transitions to places denote the products. Arcs con-
necting places to places or transitions to transitions are 
not allowed. In a stochastic Petri net transitions are exe-
cuted or fired by a stochastic process: in the scope of this 
paper, using Gillespie’s Stochastic Simulation Algorithm.

Examples
We now illustrate Gillespie L-systems with a sequence of 
examples of increased complexity.

The Lotka–Volterra process
The first example revisits the Stochastic Simulation 
Algorithm implementation of Lotka’s (Lotka 1920) chem-
ical process with an oscillatory behaviour, originally pre-
sented by Gillespie (1977). The purpose of this example 
is to show the basic structure of an L+C program using a 
Gillespie group of productions. The reactions are:

R1 : Y1
k1→2Y1

where Y1 and Y2 are two chemical substances, and k1, 
k2 and k3 are the reaction rates. The stochastic Petri net 
describing this system is shown in Fig. 2, and the corre-
sponding L+C implementation is given in Program 1.

Program 1. L+C implementation of Lotka’s chemical 
system.

The program operates on a single module C representing 
the entire reaction volume, with two parameters specifying 
the current number of molecules Y1 and Y2. We assume 
that the volume Ω in which the reactions take place is equal 
to 1, and thus the stochastic reaction parameters cj for all 
reactions, including the bimolecular reaction R2, are equal 
to their reaction rates kj (Table 1). In each simulation step, 
the simulator computes the propensities of the applicable 
productions (in this example, all three of them are always 
applicable), selects one using Gillespie’s direct method, ap-
plies it to module C and advances the current simulation 
time by the inter-reaction interval. A sample run of Program 
1 is shown in Fig. 3. Consistent with the theory (Lotka 1920), 
the number of molecules exhibits an oscillatory behaviour. 
The jagged character of the plots, clearly seen in Fig. 3B, 
reflects the inherently discrete and stochastic nature of the 
Lotka system, as the molecules only occur in integer num-
bers and enter into reactions randomly.

R2 : Y1 + Y2
k2→2Y2

R3 : Y2
k3→∅,

A0 B0
k2 k1 A B

C0

C

D0

D

Figure 1.  Petri net example of the chemical system 
A+ D

k1→B
k2→C+ D. The labels A0, B0, C0 and D0 indicate the initial 

(t = 0) numbers of molecules of each substance.

Y1,0
k1 

ØY2,0
k3 k2 Y1 Y2

2 2

Figure 2.  Stochastic Petri net for Lotka’s chemical system.
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Figure 3.  Stochastic simulation of Lotka’s chemical system. (A) 
A  plot showing the number of molecules of Y1 (green line) and 
Y2 (magenta line) over time. (B) A  phase plot of the number of 
molecules.
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Independently of Lotka’s chemical system, Volterra 
(1928) proposed an ecological model of fish catches in 
the Adriatic Sea that exhibits the same oscillatory behav-
iour. In this case, the reactions are interpreted as follows:

R1: �a prey species Y1 reproduces while feeding on 
some food source that does not deplete over time,

R2: �a predator species Y2 reproduces while feeding on 
the prey species, and

R3: the predator species dies by natural causes.

This reinterpretation shows that applications of Gillespie 
L-systems are not limited to molecular-level simulations.

Diffusion and decay
Let us now apply a Gillespie L-system to model a simple 
spatially explicit process, in which substance A diffuses 
and decays in a one-dimensional medium. The standard 
description of this process has the form of the partial 
differential equation

∂a
∂t

= −µaa+ Da
∂2a
∂x2

,� (5)

where a = a(x, t) is the concentration of A at point x and 
time t, µa is its decay rate and Da is the diffusion rate 
(Edelstein-Keshet 1988). This model can be spatially dis-
cretized into a linear structure (a one-dimensional cell 
complex) with two types of components: cells and cell 
walls (Prusinkiewicz and Lane 2013). Following the law 
of mass conservation, the rate of change in concentra-
tion ai of substance A in cell i is then equal to:

dai
dt

= J(i−1)→i − Ji→i+1 − µaai,� (6)

where J(i−1)→i, i = 2, 3, . . . ,n− 1, is the flux of A through 
the wall between cells i − 1 and i. According to Fick’s law, this 
flux is proportional to the concentration difference ai−1 − ai:

J(i−1)→i = Da(ai−1 − ai).� (7)

A Petri net corresponding to Equations (6) and (7) is shown 
in Fig. 4. It leads to the Gillespie L-system implementation in 
Program 2a. The program begins with the definition of param-
eters: diffusion rate Da, decay rate µa and the number X of mol-
ecules A in the boundary cells. Declarations of two module 
types—cell C and wall W—follow. The parameter of cell C is a 
non-negative integer denoting the number of molecules of 
substance A in this module. The parameter of wall W is the in-
teger −1, +1 or 0, indicating whether a molecule will be trans-
ported through W to the left, to the right or not at all. Program 
execution is controlled by the StartEach and EndEach state-
ment blocks, which alternate between ggroup 1 and group 2 
in consecutive simulation steps. The Gillespie group, ggroup 1,  
has two rules. The first rule, with the predecessor W(dirl) < C(A) 
> W(dirr), describes the decay of a single molecule of A. The 

context is included to maintain boundary conditions: the first 
and the last cell lack an incident wall (see the axiom), which 
fixes the number of molecules of A in them. The second rule, 
with the predecessor C(Al) < W(dir) > C(Ar), specifies diffusion 
of a molecule to the left or to the right using alternative pro-
pensity ... produce statements. The actual transport is ef-
fected by the first production in the standard L+C group 2, 
which operates in parallel on all modules C in the string ex-
cept for the boundary cells. If the transport direction is left to 
right (dir l or dir r is 1), the cell to the left of the wall will lose a 
molecule and the cell to the right will gain one. Conversely, if 
the direction is right to left (dir l or dir r is −1), the cell to the left 
of the wall will gain a molecule and the cell to the right will 
lose it. The last production resets all diffusion events to 0, in 
preparation for the next iteration of the simulation.

Program 2a. Gillespie L-system implementation of the 
diffusion-decay process using explicit representation of walls.

cell i�1            wall                cell i                 wall               cell i+1

Ø

Da 

Da 

A

μa

Ai,0

Da 

Da 

Ø

A

μa

Ø

A

μa

Ai�1,0 Ai+1,0

Figure 4.  Stochastic Petri net for diffusion and decay.
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Program 2b. Alternative Gillespie L-system implemen-
tation of the diffusion-decay process using productions 
operating on cell pairs.

Results of sample simulation runs are shown in 
Fig. 5A–C. The initial concentration of molecules A  in 
the interior cells was assumed to be 0. We varied the 
number X of molecules of A in the boundary cells be-
tween different simulation runs to show the effects 
of increasing this number on the results. In each 

simulation run, the cell volume Ω was set to be numer-
ically equal to X, so that concentration XΩ was equal to 
1. This normalization facilitated comparisons of simu-
lations with different molecule numbers. As expected 
(Gillespie 2007; Wang et al. 2007; Vigelius and Meyer 
2012), the stochastic solution became less noisy 
as the number of molecules increased. For a com-
parison, Fig. 5D shows a solution to a deterministic 
diffusion-decay system with continuous represen-
tation of concentrations (Equations (6) and (7)). The 
apparent convergence to the deterministic solution is 
consistent with the convergence of the molecular mo-
tion produced by voxel-hopping to the standard dif-
fusion equation (Gillespie et al. 2014). The stochastic 
simulation has the advantage of better representing 
the diffusion-decay process when the number of mol-
ecules is small.

Incidentally, the same diffusion-decay process can 
also be simulated using the Gillespie L-system given 
by Program 2b. In this case, diffusion is effected by a 
single production (with two alternative produce state-
ments) operating on a pair of modules. The boundary 
conditions, maintaining constant number of mol-
ecules in the first and last cell, are enforced by rep-
resenting these cells using distinct modules B.  The 
implementation of diffusion in a single simula-
tion step makes Program 2b somewhat faster than 
Program 2a (~20  % in our implementation). On the 
other hand, Program 2a emphasizes the local char-
acter of diffusive transport, and is consistent with the 
standard definition of L-systems, according to which 
each production has a single predecessor (this as-
sumption is key to the parallel operation of standard 
L-systems). The choice between Programs 2a and 2b 
is thus largely a matter of programming style.

High

Low

Ti
m
e

A B C D

Figure 5.  Visual representation of the stochastic and deterministic solutions to the diffusion-decay process. The change in concentration over 
time is shown from top to bottom in unit time steps from 0 to 50 units. High to low concentrations correspond to the colours given in the bar 
on the right. (A–C) Stochastic solutions produced by Program 2 with X = 10 (A), 100 (B) and 1000 (C) molecules in the boundary cells. In each 
case, the filament is visualized as a row of n = 32 cells, with volume Ω equal numerically to X. (D) Deterministic solution with continuous con-
centration obtained by solving Equations (6) and (7) numerically.
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Reaction-diffusion
In this example, we construct a Gillespie L-system to 
simulate a stochastic reaction-diffusion patterning 
process (Turing 1952; Gierer and Meinhardt 1972; 
Meinhardt 1982).We focus on pigmentation patterning 
in seashells, for which models expressed using partial 
differential equations are well understood (Meinhardt 
and Klingler 1987, 1988; Fowler et al. 1992; Meinhardt 
2009). The activator-substrate variant of these models is 
described by the following equations (Meinhardt 2009):

∂a
∂t

= ρs(a2 + ρ0)− µaa+ Da
∂2a
∂x2

,� (8)

∂s
∂t

= σ − ρs(a2 + ρ0)− µss+ Ds
∂2s
∂x2

.� (9)

Each of these equations extends the diffusion-decay 
system, discussed previously, with terms representing 
reactions between activator A with concentration a and 
substrate S with concentration s. At the molecular level, 
these reactions have the form:

R1 : ∅ σ→ S� (10)

R2 : S
ρρ0→ A� (11)

� (12)

Following Table 1, their propensities are α1 = σΩ, 
α2 = ρρ0S and α3 = ρ

Ω2 SA(A− 1), respectively. The re-
sulting stochastic Petri net combines these reactions 
with two diffusion-decay models: one for activator A 
and another for substrate S (Fig. 6). Correspondingly, 
Program 3, specifying the activator-substrate process in 
L+C, has production groups similar to Program 2.

Figure 7A–C show the results of three runs of the sim-
ulation of the pigmentation pattern found in the sea-
shell Amoria undulata (Fowler et  al. 1992; Meinhardt 
2009). The images represent consecutive states of the 
simulation in a row of n  =  100 modules, obtained for 

three different values of (mathematical) cell volume 
Ω: 10, 100 and 1000. As in the diffusion-decay model, 
the volume Ω was numerically equal to the initial 
number of molecules A  and S in each run. The solu-
tions used the following parameter values: ρ = 0.1
, ρ0 = 0.005, µa = 0.08, Da  =  0.004, µs = 0 and Ds  =  0. 
The σ parameter was modulated for each cell ac-
cording to a sine function in order to generate lines 
of undulating shape (Fowler et  al. 1992). Specifically, 
σ = σmin + (sin(2π · 3i/n) + 1)(σmax − σmin)/2, with 
σmin = 0.02 and σmax = 0.032, for each cell i = 1, . . . ,n
. For a comparison, Fig. 7D shows a numerical solution 
of Equations (8) and (9) assuming a continuous repre-
sentation of concentrations. In nature, these temporal 
progressions take place on the growing shell margin, 
leaving a pigmentation pattern ‘frozen’ on the shell sur-
face. The patterns found in A.  undulata seashells (e.g. 
Fowler et al. 1992, Fig. 12) exhibit irregularities that are 
consistent with the stochastic simulation in Fig. 7C. The 
stochastic model thus gives a satisfactory explanation 
for irregularities that are observed in the natural pat-
terns, but are not captured by the deterministic model.

Program 3. Gillespie L-system productions implementing 
a stochastic model of the activator-substrate process.

Auxin-driven morphogenesis
In this last example, we consider the regulation of leaf 
shape by a key component of plant morphogenesis, the 
hormone auxin (Sachs 1991; Zažímalová et al. 2014). The 
export of auxin from a cell relies on the activity of carriers 
in the cell membrane. Among them, the PIN1 protein 

R3 : S+ 2A
ρ→3A.

Figure 6.  Stochastic Petri net for the activator-substrate process.
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appears to play the most prominent morphogenetic role. 
The allocation of PIN1 to different regions of the mem-
brane is regulated by auxin itself (Paciorek et al. 2005), 
creating a feedback loop that plays an essential role in 
many aspects of plant morphogenesis. Molecular-level 
details of this process are the subject of ongoing research 
(Abley et al. 2013; Cieslak et al. 2015), but within the leaf 
margin the end result is a preferential allocation of PIN1 
to regions of the cell membrane abutting neighbouring 
cells with a high concentration of auxin (Hay et al. 2006; 
Scarpella et al. 2006). As a result of this ‘up-the-gradient’ 
allocation (Jönsson et  al. 2006; Smith et  al. 2006), a 
pattern of auxin concentration maxima and minima 
emerges. The maxima promote an outgrowth of future 
serrations, lobes or entire leaflets, thus shaping the de-
veloping leaf (Hay et al. 2006; Bilsborough et al. 2011, Bar 
and Ori 2014; Runions et al. 2017; Conklin et al. 2019).

The first model of the above process was formulated in 
terms of differential equations (Bilsborough et al. 2011). 
Here we construct a stochastic model paralleling the 
version described by Prusinkiewicz and Lane (2013). The 
leaf margin is represented as sequence of cells that grow 
and divide upon reaching a threshold length. The volume 
of each cell is computed dynamically as the product of 
its cross-sectional area S, assumed to be constant, and 
length x, affected by growth and divisions. Within each 
cell, the model accounts separately for the number of 
PINs in the cytoplasm (PIN) and in the membrane re-
gions abutting the left and right neighbouring cells (PINl 
and PINr , respectively). We distinguish between mole-
cule count, denoted without brackets, for instance A for 
auxin molecules A, volumetric concentration [A] = A

xS, 
and—in the case of molecules allocated to membrane 
regions—area concentrations, for instance [[PINl]] = PINl

S .
PIN concentration on the membrane is the result 

of two processes: exocytosis, or the allocation of PIN 
from the cytoplasm to the membrane, and endocy-
tosis, or the return to the cytoplasm. Consistent with the 

up-the-gradient polarization model, we assume that the 
propensity of exocytosis PIN→ PINl, which allocates a 
PIN molecule in cell i to the membrane region abutting 
its left neighbour i − 1, is proportional to the region area 
S, the PIN concentration in the cytoplasm, [PIN], and the 
auxin concentration in the neighbouring cell, [Al]:

α1l = σp[Al][PIN]S =
σp
xlxS

AlPIN.� (13)

We further assume that endocytosis PINl → PIN, which 
deallocates a PIN molecule from the membrane to the cy-
toplasm, has a propensity characteristic of a decay process:

α2l = µpPINl.� (14)

Analogous equations apply to the membrane segment 
abutting cell i + 1:

α1r = σp[Ar][PIN]S =
σp
xrxS

ArPIN,� (15)

α2r = µpPINr.� (16)

The number of auxin molecules in the cell changes as the 
result of their production, turnover and transport to and 
from the neighbouring cells. We assume that auxin is 
produced at a constant rate throughout the cell volume, 
which yields the propensity of event ∅ → A equal to

α3 = σaxS.� (17)

Auxin turnover A→ ∅ is treated as a random decay of 
auxin molecules, which yields propensity

α4 = µaA.� (18)

Consistent with Fick’s law, the propensity of exporting 
auxin diffusively to a neighbouring cell is proportional to 
auxin concentration [A] and interface area S:

α5 = D[A]S =
D
x
A.� (19)

Ti
m
e

A B C D

Figure 7.  Simulations of the Amoria undulata seashell pattern formation showing the stochastic solutions with (A) Ω = 10, (B) Ω = 100 and 
(C) Ω = 1000, and (D) the deterministic solution to the activator-substrate process. Each pattern has 100 columns and 160 rows.
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A related formula describes the propensity of auxin 
transport facilitated by PIN, except that, in this case, the 
transport rate is modulated by the area density of PIN in 
the respective membrane:

α6l = T[[PINl]][A]S =
T
xS
PINlA.� (20)

Analogously, propensity of transport to the right 
neighbour is

α6r = T[[PINr]][A]S =
T
xS
PINrA.� (21)

Program 4a. Gillespie L-system productions 
implementing a stochastic model of auxin-driven leaf 
margin development.

Program 4b. Control of the production application in 
Program 4a.

The Petri net summarizing these processes is shown in 
Fig. 8, and the essential part of the resulting Gillespie 
L-system is given in Program 4a. The first rule in Gillespie 
group 1 captures the exocytosis and endocytosis of PINs, 
and the production and turnover of auxin. The applica-
tion of this rule begins with a calculation of the number 
of PIN molecules in the cytoplasm using the equation

PIN =
⌊
xS[PIN0]

⌋
−PINl − PINr,� (22)

where [PIN0] is the volumetric concentration of PIN in the 
cell, assumed to be constant. The second Gillespie rule sto-
chastically selects a transport event. This rule is centred on 
a wall rather than a cell, and requires slightly more com-
plicated indexing than that in Equations (19–21). The first 
subscript points to the left or right incident cell, and the 
second one, if present, to the left or right membrane region 

cell i

PIN

A

PINli,0

Ø

PINri,0

Ai+1,0

PINl PINr

Ai,0Ai�1,0

Ø

A A

cell i�1    wall cell i+1wall

μpμp

μa

σaxS

PINi,0

σp
xlxS

σp
xrxS

T
xS

T
xS

T
xrS

T
xlS

D
x

D
x

D
xl

D
xr

Figure 8.  A stochastic Petri net model of the auxin-driven pat-
terning of a leaf margin.
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within that cell. This rule works in concert with the produc-
tions in group 2 to effect molecule transport between cells, 
in a manner similar to the diffusion-decay and reaction-
diffusion Gillespie L-systems.

The final element of the model is the development 
of the leaf margin, giving the simulated leaf its shape. 
Beginning with an initial shape resembling a leaf primor-
dium, the cells elongate at a constant rate. Moreover, 
they are displaced in the normal direction at a rate pro-
portional to the concentration of auxin, creating leaf 
lobes as described by Bilsborough et  al. (2011) and 
Prusinkiewicz and Lane (2013). The rules implementing 
this growth are not shown in Program 4a, as they are 
not specific to Gillespie L-systems. However, cell divi-
sion is described by the rule in group 3. Upon reaching 
threshold length xmax the cell divides symmetrically. 
Auxin molecules are apportioned according to the size 
of child cells: due to the symmetry, each daughter cell 
inherits 12  of all molecules (only slightly more complex, 
but more consistent with the spirit of stochastic simu-
lation would be to divide molecules A between left and 
right cell using a binomial distribution). Auxin concen-
tration in the daughter cells is thus the same as it was in 
the mother cell. Likewise, Equation (22) apportions PIN 
molecules to the daughter cells proportionally to their 
volume. The numbers of PIN molecules allocated to the 
left and right membrane regions of each daughter cell 
are assumed to be the same as it was in the mother cell, 
so that the cell division does not disrupt the auxin flow. 
This implies preserving PINs in the existing membrane 

regions, and allocating PINs to the emerging wall be-
tween the daughter cells.

Growth and cell divisions could be simulated using 
stochastic productions as well, but the model achieves 
better performance by employing standard, deter-
ministic L-system productions for this purpose. The 
resulting combination of stochastic and determin-
istic productions requires a careful scheduling of 
events (Lu et  al. 2004). This is achieved by preceding 
the productions in Program 4a with a code control-
ling their execution, listed in Program 4b. Molecular 
processes are simulated first, by alternating between 
productions in ggroup 1 and group 2 as in Programs 
2a and 3.  This phase continues until the current sim-
ulation time t, returned by the GillespieTime ()  
function, reaches time gt of the next growth-and-cell-
division event. Productions in group 3 are then exe-
cuted, and time gt is incremented by the predefined 
interval ∆gt. At this point, the simulation of molecular 
processes captured by productions in ggroup 1 usually 
resumes. It is possible, however, that simulation time 
t is still greater than growth-and-division time gt (this 
is particularly likely when the number of molecules in 
the model is small, implying large inter-reaction times 
and steps in the values of t). In this case, time gt is 
incremented again, and growth and cell division are 
simulated, until the condition t < gt becomes true.

Figure 9 shows sample simulation results, obtained 
using parameter values: T = 0.2, D = 35, σa = 4, µa = 0.25,  
[PIN0] = 100, σp = 40 and µp = 5. All cells had cross 

A BA B

Figure 9.  Visualization of the ivy leaf model showing growth of the margin over time. (A) and (B) are examples of forms resulting from dif-
ferent runs of the same stochastic model. Each cell is represented as a trapezoid, coloured according to its auxin concentration: white to 
dark blue corresponds to low to high concentration. PIN concentrations are visualized as red lunes on cell edges; wider lunes represent larger 
concentrations.
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section S  =  1 and were dividing upon reaching the 
threshold length xmax  =  22.5. Their initial lengths xi,0 
were close to xmax. The boundary cells were set to 
maintain zero auxin concentration, and the remaining 
six cells of the leaf primordium were initialized with 
100xi,0S auxin molecules each. Initially no PIN mol-
ecules were allocated to the cell membranes. Although 
these values—and details of the underlying equa-
tions—have been chosen arbitrarily, the model does il-
lustrate the general applicability of Gillespie L-systems 
to the simulation of auxin-driven patterning processes, 
and their ability to capture random variations in this 
context.

Conclusions
We have proposed an integration of Gillespie’s 
Stochastic Simulation Algorithm and L-systems as a 
method for simulating stochastic processes in struc-
tures with a constant or variable number of modules 
representing cells or higher-level compartments. While 
‘ordinary’ L-system productions are applied to all mod-
ules in parallel, Gillespie-style productions are selected 
according to a set of propensity functions and applied 
to one module per simulation step. We have illustrated 
the operation of Gillespie L-systems with examples pro-
gressing from a single-compartment Lotka–Volterra 
model to diffusion-decay, reaction-diffusion and auxin-
driven morphogenetic processes. For simplicity, we have 
only considered linear structures (files of cells), although 
the formalism inherits from L-systems the capability of 
simulating branching structures as well. The combi-
nation of Gillespie’s algorithm and L-systems makes it 
possible to account for the noise occurring in systems in 
which the number of molecules is small, and captures 
the variation in patterns and forms stemming from this 
noise. Prospective improvements and extensions include 
acceleration of simulations. One possibility is to limit the 
explicit computation of propensities to those affected 
by the previous simulation step, while propagating the 
remaining propensities intact (Gibson and Bruck 2000). 
The challenge is to automatically construct the depend-
ency graph that would identify the propensities in need 
of updating, given an arbitrary Gillespie L-system. Other 
paths to acceleration are offered by improvements 
to the subvolume method (Elf and Ehrenberg 2004) 
and fast approximations of the Stochastic Simulation 
Algorithm (Gillespie 2007; Marquez-Lago and Burrage 
2007; Lampoudi et al. 2009). Of interest is also an ex-
tension of Gillespie L-systems to two- and three-dimen-
sional cell complexes (Desbrun et al. 2008; Lane 2015), 
which would allow for a stochastic simulation of pro-
cesses taking place in growing tissues.
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