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Abstract

Background. Lindenmayer systems (L-systems) provide a useful framework for modelling the development
of multicellular structures and organisms. The parametric extension of L-systems allows for incorporating
molecular-level processes into the models. Until now, the dynamics of these processes has been expressed
using differential equations, implying continuously-valued concentrations of the substances involved. This
assumption is not satisfied, however, when the numbers of molecules are small. A further extension that
accounts for the stochastic effects arising in this case is thus needed.
Results. We integrate L-systems and the Gillespie Stochastic Simulation Algorithm to simulate stochastic
processes in fixed and developing linear structures. We illustrate the resulting formalism with stochastic
implementations of diffusion-decay, reaction-diffusion, and auxin-transport-driven morphogenetic processes.
Conclusions. Our method and software can be used to simulate molecular and higher-level spatially
explicit stochastic processes in static and developing structures, and study their behaviour in the presence of
stochastic perturbations.

Keywords: Auxin-based patterning; Gillespie’s Stochastic Simulation Algorithm; L-system; leaf develop-
ment; Lotka–Volterra equations

1 Introduction

L-systems are a powerful formalism for mod-
elling the development of growing linear and
branching structures, from basal filamentous

organisms to trees and entire plant ecosystems
(Prusinkiewicz and Lindenmayer, 1990; Lane and
Prusinkiewicz, 2002). The introduction of parame-
ters into L-systems (Lindenmayer, 1974) has made it
possible to capture genetic regulatory mechanisms
and physiological processes that affect development
by using a continuous-level representation of the
substances involved (Coen et al., 2004; Allen et al.,
2005; Buck-Sorlin et al., 2005; Prusinkiewicz et al.,
2009). However, in many biological processes the
numbers of molecules are relatively low, and the
assumption of continuity of concentration is not sat-
isfied (McAdams and Arkin, 1997; Elowitz et al.,
2002; Rao et al., 2002). In these cases individual

molecules must be considered, and algorithms that
simulate stochastic fluctuations in molecule num-
bers are needed.

Stochastic simulation of reaction kinetics was pi-
oneered by Gillespie (1976, 1977). The essence of
his method is a discrete-event simulation of reac-
tions between individual molecules in a spatially
homogeneous, well-mixed system. To simulate het-
erogeneous systems, Gillespie (1976) proposed an
extension, in which molecules diffuse between sub-
volumes in compartmentalized space. Spicher et al.
(2008) incorporated Gillespie’s algorithm into P-
systems (Păun and Rozenberg, 2002), where the
modelled system, such as a cell, is structured into a
hierarchy of compartments enclosed by membranes.
Lloyd-Price et al. (2012) reported further advance-
ments in this direction.

Here we extend Gillespie’s algorithm to compart-
mentalized linear structures by combining it with

Cieslak and Prusinkiewicz Page 1 of 16



L-systems. This allows for a concise specification of
processes involving numerous compartments and
provides a convenient, well defined computational
framework for the stochastic modelling of biochemi-
cal processes taking place in both static and develop-
ing structures. We illustrate the strength of Gillespie-
Lindenmayer systems, or Gillespie L-systems for
short, using examples of morphogenetic processes
that include reaction-diffusion and auxin-driven pat-
terning. In each case, we highlight the impact that
the number of molecules has on the characteristics
of the solution. We also show that—as expected—
the stochastic solutions converge to their continuous
counterparts as the number of molecules increases.

2 Gillespie L-systems

As the stepping stone for constructing Gillespie L-
systems, let us first review its constituent compo-
nents: Gillespie’s Stochastic Simulation Algorithm
and Lindenmayer systems.

2.1 Gillespie’s Stochastic Simulation Al-
gorithm

Consider N chemical substances S1, . . . , SN that in-
teract via M reactions R1, . . . , RM. The system state
is described by the vector X = (X1, . . . , XN), where
each entry Xk is the number of molecules of sub-
stance Sk at time t. The probability that a particular
reaction Rj ∈ (R1, . . . , RM) will occur in the infinites-
imal time interval [t, t + dt) is given by the product
αj(X)dt, where the term αj(X) is called a propensity
function. Under the assumption of a uniform dis-
tribution of molecules in space, this function is the
product of the number of distinct combinations of
reacting molecules, hj(X), and the stochastic reac-
tion parameter, cj, which depends on the type of
reaction and temperature, and is related to the re-
action rate k j in chemical kinetics (Gillespie, 1976,
1977, 2007) (Table 1).

The evolution of the system over time is simulated
by iterating the following steps:

1. determine the delay τ (inter-reaction time) with
which the next reaction will take place, and the
index of the next reaction j ∈ (1, . . . , M),

2. modify the state X, taking into account the re-
actants removed from the system and products
added to the system by reaction Rj, and

3. advance simulation time t by τ.

To generate one random pair (τ, j), Gillespie pro-
posed two methods: the first-reaction method and
the direct method. In the first reaction method, a pu-
tative time τj′ , j′ ∈ (1, . . . , M), is generated for each
reaction, and the reaction with the smallest time, τj,
is chosen. In the direct method values for τ and j
are generated according to a joint probability func-
tion of τ and j. The direct method is more efficient
than the first reaction method because fewer ran-
dom numbers must be generated per iteration step.
Consequently, we only consider the direct method.

Gillespie showed that the time between two reac-
tions can be described by an exponential distribu-
tion. First, the combined propensity of all possible
reactions is computed:

α0(X) = ΣM
j′=1αj′(X). (1)

The inter-reaction time τ is then calculated as an
exponentially distributed random variable with a
mean value of 1/α0(X). The index of the next reac-
tion is described by a discrete probability distribu-
tion, where αj(X)/ff0(X) is the probability that the
next reaction is Rj. The inter-reaction time τ and
the next reaction Rj are then generated according to
these probability distributions using the inversion
method (Gillespie, 1976). Specifically, given two in-
dependent random numbers r1 and r2, generated
with uniform distribution in the interval (0, 1], the
inter-reaction time is obtained using the formula

τ =
1
α0

ln
1
r1

, (2)

and the reaction index j is determined by solving
the equation

j−1

∑
j′=1

αj′ < r2α0 ≤
j

∑
j′=1

αj′ . (3)

To incorporate spatial inhomogeneities into sim-
ulations of chemical systems, Gillespie (1976) pro-
posed an extension to the basic Stochastic Simula-
tion Algorithm, in which the volume V is divided
into n subvolumes (also referred to as compartments
or components) Vi (i = 1, 2, . . . , n). Two basic ideas
underly this extension:

• Propensities of reactions taking place in dif-
ferent subvolumes are calculated individually
for each subvolume. Thus, instead of a reaction
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Reaction name Reaction h c

source ∅ k−→ products 1 kΩ

unimolecular S1
k−→ products X1 k

bimolecular S1 + S2
k−→ products X1X2 k/Ω

trimolecular S1 + 2S2
k−→ products X1X2(X2 − 1)/2 2k/Ω2

Table 1: Terms involved in the calculation of reaction propensities for several reaction types. Column h:
the number of distinct molecular combinations of reactants S1 and S2 as a function of the number of their
molecules, X1 and X2. Column c: the stochastic reaction parameter as a function of the reaction rate k.
Symbol ∅ denotes an external source of products. Parameter Ω is the volume in which the reactions take
place.

propensities αj, the algorithm calculates propen-
sity αij of reaction j taking place in subvolume
i.

• Transport of a molecule from subvolume i to its
neighbor ı̂ is treated as a unimolecular reaction
that removes a molecule from subvolume i and
deposits it in subvolume ı̂.

The inter-reaction time τ, the index j of the next
reaction or transport event, and the index i of the
subvolume where the next event occurs — or sub-
volume pair (i, ı̂) for transport events — are then
generated using Equations 1–3, in which the summa-
tion extends to all pairs (i, j) of reaction events and
triplets (i, ı̂, j) of transport events. Formal details
are presented by Stundzia and Lumsden (1996).

With the extension to subvolumes, Gillespie’s al-
gorithm can simulate the time evolution of a spa-
tially explicit system in which the partition into sub-
volumes is fixed, while the molecules within each
subvolume are distributed uniformly. To model the
development of multicellular organisms, however, it
is necessary to consider spatial structures in which
the number of subvolumes and reactions associated
with them may change over time (e.g., following cell
division). We integrate Gillespie’s algorithm with
L-systems to provide a mechanism in which both
fixed and developing structures can be simulated
easily.

2.2 L-systems

Parallel rewriting systems, subsequently called L-
systems, were introduced by Lindenmayer (1968) to
specify, model, and reason about the development
of multicellular structures (whole organisms or their

parts) with filamentous or branching topology. A
structure is represented by a string of symbols (let-
ters) that correspond to its individual components,
such as cells, higher level architectural units, or com-
partments resulting from a discretization of a contin-
uous space. The evolution of the structure state over
time is characterized by rewriting rules, also called
productions, which specify how a predecessor symbol
is replaced by zero, one, or more successor symbol(s)
in the string. For example, the rule A → BC may
be used to represent the division of cell A into two
daughter cells, B and C. The rules are applied in
parallel to the entire string, to capture the simulta-
neous progress of time in all parts of the organism
(Prusinkiewicz and Lindenmayer, 1990).

Parametric L-systems associate numerical
parameters with the symbols (Lindenmayer,
1974; Prusinkiewicz and Lindenmayer, 1990;
Prusinkiewicz et al., 2018), for instance to
quantify the chemical substances in each com-
ponent of the structure. For example, the rule
C(z) → C(z − µzz∆t) describes the decay of
substance Z in cell C, where z is the concentration
of Z at time t, µz is the decay rate, and ∆t is the
time step.

A symbol with the associated parameters is re-
ferred to as a module. Communication between mod-
ules and the transport of substances within the struc-
ture can be modeled using context-sensitive produc-
tions, in which the production successor depends
not only on the predecessor module, but also on
its neighbors or context. Notationally, the context is
separated from the predecessor by symbols < and
>. For example, production

W(JL) < C(a) > W(JR)→ C(a + (JL − JR)∆t) (4)
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specifies that concentration a of some substance
in cell C changes according to the fluxes JL and
JR through walls W on both sides of C. Context-
sensitive productions facilitate modeling of multicel-
lular structures, because they eliminate the need to
index cells, and then reindex them as the structure
develops and neighborhood relations change.

We will specify L-systems using the L+C mod-
elling language implemented in the simulation pro-
gram lpfg, which augments the expressive power
of L-systems by combining them with C++ (Kar-
wowski, 2002; Karwowski and Prusinkiewicz, 2003;
Prusinkiewicz et al., 2007, 2018). L+C is relatively
self-explanatory; for example, the context-sensitive
production (4) is written in L+C as

W( JL) < C(a) > W( JR):
{ produce C(a+( JL- JR)∆t); }

In a complete L+C program, symbols representing
components of the structure are declared using the
keyword module, with the parameter types listed
in parentheses. The initial string is specified after
the keyword axiom. Predefined keywords Start
and End indicate optional blocks of C++ statements
executed at the beginning or end of the simula-
tion, for example to initialize variables used in the
simulation or report statistics gathered during its
execution. Likewise, StartEach, and EndEach indi-
cate statements executed at the beginning or end of
each simulation step. Following these blocks, the
L-system productions are listed. A production may
have more than one successor, each preceded by the
produce keyword. In the original version of L+C
the applicable successor is selected using a condi-
tional statement; in Gillespie L-systems the selection
mechanism is extended to include the stochastic
mechanism described in the next section. The set of
all productions can be partitioned into subsets called
groups by the statement group: id (Prusinkiewicz
et al., 2007), interspersed between productions. This
statement assigns a numerical identifier id to all
productions following it in the production list, until
the next group: id statement occurs or the produc-
tion list ends. The group: id statements are used in
conjunction with the function UseGroup(id), which
is typically called within the StartEach block and
specifies which group of productions should be used
in the forthcoming simulation step. The notion of
groups thus increases the flexibility of L-system pro-
gramming by making it possible to employ different
production groups in different simulation steps.

2.3 Integration of Gillespie’s algorithm
and L-systems

To combine Gillespie’s algorithm and L-systems, we
introduced the notion of a Gillespie group of produc-
tions, identified by the keyword ggroup. A Gillespie
L-system may include both “ordinary" and Gille-
spie groups, but only one group is active in any
simulation step. Productions in an ordinary group
are applied to all modules in the string in parallel,
consistent with the standard definition of L-systems.
In contrast, a single module in the string and a sin-
gle production or production successor are selected
in a simulation step using a Gillespie group. This
selection is effected using Gillespie’s Stochastic Sim-
ulation Algorithm extended to subvolumes — iden-
tified with modules — with probabilities controlled
by the expressions specified after the propensity
keyword associated with each successor. As the se-
lected production is applied, the current simulation
time is advanced by the inter-reaction interval. The
current time (integrated from the beginning of the
simulation) can be accessed using the predefined
L+C function GillespieTime(). Time management
and event scheduling may require attention in simu-
lations combining stochastic and deterministic pro-
ductions; an example is discussed in Section 3.4
(Program 4b).

The following example illustrates the method.
Consider substances A and B decaying in two types
of modules, C and D, declared as follows:
module C(int ,int); // A, B molecule count
module D(int); // A molecule count

The decay events are defined by productions in the
Gillespie group (although it is the only group, it
must be selected explicitly using the UseGroup(1)
statement):
Start: {UseGroup (1);}
ggroup 1:
C(A, B): {

propensity µa A produce C(A− 1, B);
propensity µbB produce C(A, B− 1);

}
D(A): {

propensity µa A produce D(A− 1);
}

In general, the propensity of each reaction is the
product of a stochastic reaction parameter and the
number of combinations of the reacting molecules.
As decay is a unimolecular reaction, the stochastic
reaction parameter is equal to the reaction (decay)
rate µ, and the numbers of combinations is equal to
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C(4,2) D(3) D(4) D(5) Σ

A 0.1−→ ∅ 4 · 0.1 3 · 0.1 4 · 0.1 5 · 0.1 1.6

B 0.2−→ ∅ 2 · 0.2 — — — 0.4
Σ 0.8 0.3 0.4 0.5 2.0

Table 2: Example of propensity calculations for two
decay reactions in a string of four modules.

the numbers of reactant molecules (Table 1). Sup-
pose the rates are µa = 0.1 and µb = 0.2, and the
current state of the system is described by the string
of four modules

C(2,2) D(3) D(5) D(5).

A simulation step begins with the simulator (lpfg)
calculating the propensity of each applicable reac-
tion in each individual module, producing the re-
sults shown in Table 2. On this basis, the simulator
stochastically selects a single reaction taking place in
a single module using Equation 3. For instance, the
probability of selecting reaction A→ ∅ in module
C is 0.4

2.0 = 0.2, the probability of selecting reaction
B→ ∅ in module C is also 0.4

2.0 = 0.2, and the proba-
bility of selecting reaction A→ ∅ in the last module
D is 0.5

2.0 = 0.25. Once the reaction and module have
been selected, the simulator decrements the num-
ber of molecules of the reacting substance in the
affected module by one, as specified by the pro-
duction successor, and determines stochastically the
inter-reaction time using Equation 2 with α0 = 2.0.
The next simulation step can then be performed, be-
ginning with the recalculation of propensities. The
entire simulation run is a sequence of such steps.

2.4 Petri nets

As the reactions become more complicated, it is con-
venient to represent them graphically using stochas-
tic Petri nets (Goss and Peccoud, 1998). We use them
in this paper to visually complement textual specifi-
cations of reaction systems. A Petri net is a directed
graph with two types of nodes: places, drawn as
circles, and transitions, drawn as rectangles (Figure
1). In the context of chemical processes, places repre-
sent substances, and transitions represent reactions
or movement of molecules between components.
The nodes are connected by directed arcs (arrows),
such that the arcs pointing from places to transitions
denote the reactants, and arcs pointing from transi-

A0 B0

k2 k1 A B
C0

C

D0

D

Figure 1: Petri net example of the chemical system A +

D
k1−→ B k2−→ C + D. The labels A0, B0, C0, and D0

indicate the initial (t = 0) numbers of molecules of each
substance.

Y1,0

k1 

ØY2,0

k3 k2 Y1 Y2
2 2

Figure 2: Stochastic Petri net for Lotka’s chemical system.

tions to places denote the products. Arcs connecting
places to places or transitions to transitions are not
allowed. In a stochastic Petri net transitions are exe-
cuted or fired by a stochastic process: in the scope of
this paper, using Gillespie’s Stochastic Simulation
Algorithm.

3 Examples

We now illustrate Gillespie L-systems with a se-
quence of examples of increased complexity.

3.1 The Lotka-Volterra process

The first example revisits the Stochastic Simulation
Algorithm implementation of Lotka’s (1920) chemi-
cal process with an oscillatory behaviour, originally
presented by Gillespie (1977). The purpose of this
example is to show the basic structure of an L+C
program using a Gillespie group of productions.
The reactions are:

R1 : Y1
k1−→ 2Y1

R2 : Y1 + Y2
k2−→ 2Y2

R3 : Y2
k3−→ ∅,

where Y1 and Y2 are two chemical substances, and
k1, k2 and k3 are the reaction rates. The stochastic
Petri net describing this system is shown in Figure 2,
and the corresponding L+C implementation is given
in Program 1.
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Program 1 L+C implementation of Lotka’s chemical sys-
tem.

/* declaration of constants */
const float k1 = 1.0;
const float k2 = 0.01;
const float k3 = 1.0;

/* variable initialization */
float t; // time of last reaction
Start: {t = 0; UseGroup (1);}
EndEach: {t = GillespieTime ();}

/* define module with two substances */
module C(int ,int);

axiom: C(100 ,100); // initial conditions

/* computation of reaction propensities */
ggroup: 1;
C(Y1, Y2): {

propensity k1Y1 produce C(Y1 + 1, Y2);
propensity k2Y1Y2 produce C(Y1 − 1, Y2 + 1);
propensity k3Y2 produce C(Y1, Y2 − 1);

}

The program operates on a single module C repre-
senting the entire reaction volume, with two param-
eters specifying the current number of molecules
Y1 and Y2. We assume that the volume Ω in which
the reactions take place is equal to 1, and thus the
stochastic reaction parameters cj for all reactions,
including the bimolecular reaction R2, are equal to
their reaction rates k j (Table 1). In each simulation
step, the simulator computes the propensities of the
applicable productions (in this example, all three
of them are always applicable), selects one using
Gillespie’s direct method, applies it to module C,
and advances the current simulation time by the
inter-reaction interval. A sample run of Program
1 is shown in Figure 3. Consistent with the theory
(Lotka, 1920), the number of molecules exhibits an
oscillatory behaviour. The jagged character of the
plots, clearly seen in Figure 3B, reflects the inher-
ently discrete and stochastic nature of the Lotka
system, as the molecules only occur in integer num-
bers and enter into reactions randomly.

Independently of Lotka’s chemical system,
Volterra (1928) proposed an ecological model of fish
catches in the Adriatic Sea that exhibits the same
oscillatory behaviour. In this case, the reactions are
interpreted as follows:

R1: a prey species Y1 reproduces while feeding on
some food source that does not deplete over

A

Y1 molecules
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Figure 3: Stochastic simulation of Lotka’s chemical sys-
tem. (A) A plot showing the number of molecules of Y1
(green line) and Y2 (magenta line) over time. (B) A phase
plot of the number of molecules.

time,

R2: a predator species Y2 reproduces while feeding
on the prey species, and

R3: the predator species dies by natural causes.

This reinterpretation shows that applications of
Gillespie L-systems are not limited to molecular-
level simulations.

3.2 Diffusion and decay

Let us now apply a Gillespie L-system to model a
simple spatially explicit process, in which substance
A diffuses and decays in a one-dimensional medium.
The standard description of this process has the
form of the partial differential equation

∂a
∂t

= −µaa + Da
∂2a
∂x2 , (5)

where a = a(x, t) is the concentration of A at point
x and time t, µa is its decay rate, and Da is the
diffusion rate (Edelstein-Keshet, 1988). This model
can be spatially discretized into a linear structure

cell i−1            wall                cell i                 wall               cell i+1

Ø

Da 

Da 

A

μa

Ai,0

Da 

Da 

Ø

A

μa

Ø

A

μa

Ai−1,0 Ai+1,0

Figure 4: Stochastic Petri net for diffusion and decay.
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(a one-dimensional cell complex) with two types of
components: cells and cell walls (Prusinkiewicz and
Lane, 2013). Following the law of mass conservation,
the rate of change in concentration ai of substance
A in cell i is then equal to:

dai
dt

= J(i−1)→i − Ji→i+1 − µaai, (6)

where J(i−1)→i, i = 2, 3, . . . , n − 1, is the flux of A
through the wall between cells i− 1 and i. Accord-
ing to Fick’s law, this flux is proportional to the
concentration difference ai−1 − ai:

J(i−1)→i = Da(ai−1 − ai). (7)

Program 2a Gillespie L-system implementation of the
diffusion-decay process using explicit representation of
walls.

const float Da = 2.5; // diffusion rate
const float µa = 0.01; // decay rate
const int X = 100; // a boundary condition

module C(int); // a cell
module W(int); // a wall

/* control of production application */
int n = 1;
StartEach :{ UseGroup(n);}
EndEach :{n = (n == 1) ? 2 : 1;}

/* create cells separated by walls */
axiom: C(X)W(0)C(0)W(0)...C(0)W(0)C(X)

/* decay and diffusion events */
ggroup 1:
W(dirl) < C(A) > W(dirr): {

propensity µa A produce C(A− 1);
}
C(Al) < W(dir) > C(Ar): {

propensity Da Al produce W(1);
propensity Da Ar produce W(-1);

}

/* transport a molecule if necessary */
group 2:
W(dirl) < C(A) > W(dirr): {

produce C(A + dirl − dirr);
}
W(dir): {

produce W(0);
}

A Petri net corresponding to Equations 6 and 7 is
shown in Figure 4. It leads to the Gillespie L-system
implementation in Program 2a. The program begins
with the definition of parameters: diffusion rate Da,

Program 2b Alternative Gillespie L-system implemen-
tation of the diffusion-decay process using productions
operating on cell pairs.

const float Da = 2.5; // diffusion rate
const float µa = 0.01; // decay rate
const int X = 100; // a boundary condition

module B(int); // a boundary cell
module C(int); // an interior cell

/* use Gillespie group */
Start:{ UseGroup(1);}

/* create a string of cells */
axiom: B(X)C(0)C(0)...C(0)B(X)

/* decay and diffusion events */
ggroup 1:
C(A): {

propensity µa A produce C(A− 1);
}
C(Al) C(Ar): {

propensity Da Al produce C(Al − 1) C(Ar + 1);
propensity Da Ar produce C(Al + 1) C(Ar − 1);

}

/* enforce boundary conditions */
B(Al) < C(Ar): {

propensity Da Al produce C(Ar + 1);
propensity Da Ar produce C(Ar − 1);

}
C(Al) > B(Ar): {

propensity Da Al produce C(Al − 1);
propensity Da Ar produce C(Al + 1);

}

decay rate µa, and the number X of molecules A
in the boundary cells. Declarations of two module
types — cell C and wall W — follow. The parame-
ter of cell C is a non-negative integer denoting the
number of molecules of substance A in this module.
The parameter of wall W is the integer −1, +1 or 0,
indicating whether a molecule will be transported
through W to the left, to the right, or not at all. Pro-
gram execution is controlled by the StartEach and
EndEach statement blocks, which alternate between
ggroup 1 and group 2 in consecutive simulation
steps. The Gillespie group, ggroup 1, has two rules.
The first rule, with the predecessor W(dirl) < C(A) >
W(dirr), describes the decay of a single molecule of
A. The context is included to maintain boundary
conditions: the first and the last cell lack an inci-
dent wall (see the axiom), which fixes the number
of molecules of A in them. The second rule, with
the predecessor C(Al) < W(dir) > C(Ar), specifies
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diffusion of a molecule to the left or to the right us-
ing alternative propensity... produce statements.
The actual transport is effected by the first produc-
tion in the standard L+C group 2, which operates
in parallel on all modules C in the string except for
the boundary cells. If the transport direction is left
to right (dirl or dirr is 1), the cell to the left of the
wall will lose a molecule and the cell to the right
will gain one. Conversely, if the direction is right
to left (dirl or dirr is -1), the cell to the left of the
wall will gain a molecule and the cell to the right
will lose it. The last production resets all diffusion
events to 0, in preparation for the next iteration of
the simulation.

Results of sample simulation runs are shown in
Figures 5A–C. The initial concentration of molecules
A in the interior cells was assumed to be 0. We var-
ied the number X of molecules of A in the boundary
cells between different simulation runs to show the
effects of increasing this number on the results. In
each simulation run, the cell volume Ω was set to
be numerically equal to X, so that concentration
X
Ω was equal to 1. This normalization facilitated
comparisons of simulations with different molecule
numbers. As expected (Wang et al., 2007; Vigelius
and Meyer, 2012; Gillespie, 2007), the stochastic so-
lution became less noisy as the number of molecules
increased. For a comparison, Figure 5D shows a
solution to a deterministic diffusion-decay system
with continuous representation of concentrations
(Equations 6 and 7). The apparent convergence
to the deterministic solution is consistent with the
convergence of the molecular motion produced by
voxel-hopping to the standard diffusion equation
(Gillespie et al., 2014). The stochastic simulation has
the advantage of better representing the diffusion-
decay process when the number of molecules is
small.

Incidentally, the same diffusion-decay process can
also be simulated using the Gillespie L-system given
by Program 2b. In this case, diffusion is effected by
a single production (with two alternative produce
statements) operating on a pair of modules. The
boundary conditions, maintaining constant number
of molecules in the first and last cell, are enforced
by representing these cells using distinct modules B.
The implementation of diffusion in a single simula-
tion step makes Program 2b somewhat faster than
Program 2a (approximately 20% in our implemen-
tation). On the other hand, Program 2a emphasizes
the local character of diffusive transport, and is con-

sistent with the standard definition of L-systems,
according to which each production has a single
predecessor (this assumption is key to the parallel
operation of standard L-systems). The choice be-
tween Programs 2a and 2b is thus largely a matter
of programming style.

3.3 Reaction-diffusion

In this example, we construct a Gillespie L-system to
simulate a stochastic reaction-diffusion patterning
process (Turing, 1952; Gierer and Meinhardt, 1972;
Meinhardt, 1982).We focus on pigmentation pattern-
ing in sea shells, for which models expressed using
partial differential equations are well understood
(Meinhardt and Klingler, 1987, 1988; Fowler et al.,
1992; Meinhardt, 2009). The activator-substrate vari-
ant of these models is described by the following
equations (Meinhardt, 2009):

∂a
∂t

= ρs
(

a2 + ρ0

)
− µaa + Da

∂2a
∂x2 , (8)

∂s
∂t

= σ− ρs
(

a2 + ρ0

)
− µss + Ds

∂2s
∂x2 . (9)

Each of these equations extends the diffusion-decay
system, discussed previously, with terms represent-
ing reactions between activator A with concentra-
tion a and substrate S with concentration s. At the
molecular level, these reactions have the form:

R1 : ∅ σ−→ S (10)

R2 : S
ρρ0−→ A (11)

R3 : S + 2A
ρ−→ 3A. (12)

Following Table 1, their propensities are α1 = σΩ,
α2 = ρρ0S and α3 = ρ

Ω2 SA(A− 1), respectively. The
resulting stochastic Petri net combines these reac-
tions with two diffusion-decay models: one for acti-
vator A and another for substrate S (Figure 6). Cor-
respondingly, Program 3, specifying the activator-
substrate process in L+C, has production groups
similar to Program 2.

Figures 7A-C show the results of three runs of
the simulation of the pigmentation pattern found
in the sea shell Amoria undulata (Meinhardt, 2009;
Fowler et al., 1992). The images represent consecu-
tive states of the simulation in a row of n = 100 mod-
ules, obtained for three different values of (math-
ematical) cell volume Ω: 10, 100 and 1000. As in
the diffusion-decay model, the volume Ω was nu-
merically equal to the initial number of molecules
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Figure 5: Visual representation of the stochastic and deterministic solutions to the diffusion-decay process. The
change in concentration over time is shown from top to bottom in unit time steps from 0 to 50 units. High to low
concentrations correspond to the colours given in the bar on the right. (A–C) Stochastic solutions produced by Program
2 with X = 10 (A), 100 (B) and 1000 (C) molecules in the boundary cells. In each case, the filament is visualized as a
row of n = 32 cells, with volume Ω equal numerically to X. (D) Deterministic solution with continuous concentration
obtained by solving Equations 6 and 7 numerically.

A and S in each run. The solutions used the fol-
lowing parameter values: ρ = 0.1, ρ0 = 0.005,
µa = 0.08, Da = 0.004, µs = 0, and Ds = 0. The
σ parameter was modulated for each cell accord-
ing to a sine function in order to generate lines of
undulating shape (Fowler et al., 1992). Specifically,
σ = σmin +(sin(2π · 3i/n)+ 1)(σmax−σmin)/2, with
σmin = 0.02 and σmax = 0.032, for each cell i =
1, . . . , n. For a comparison, Figure 7D shows a nu-
merical solution of Equations 8 and 9 assuming
a continuous representation of concentrations. In
nature, these temporal progressions take place on
the growing shell margin, leaving a pigmentation
pattern “frozen" on the shell surface. The patterns
found in Amoria undulata seashells, e.g. (Fowler et al.,

cell i−1       wall           cell i         wall         cell i+1

Si,0

Ø Ø

Ø

Da 

Da 

A

μa

Ds 

Ds 

S

μsσΩ

Ai,0

Da 

Da 

Ds 

Ds 

Ø Ø

Ø

Ø Ø

Ø

ρρ0

2

3

ρ
Ω2

Figure 6: Stochastic Petri net for the activator-substrate
process.

Program 3 Gillespie L-system productions implementing
a stochastic model of the activator-substrate process.

int n = 1;
StartEach :{ UseGroup(n);}
EndEach :{n = (n == 1) ? 2 : 1;}

ggroup 1:
W(dirAl , dirSl) < C(A, S) > W(dirAr , dirSr): {

propensity σΩ produce C(A, S + 1);
propensity µsS produce C(A, S− 1);
propensity ρ

Ω2 SA(A− 1) produce C(A + 1, S− 1);
propensity ρρ0S produce C(A + 1, S− 1);
propensity µa A produce C(A− 1, S);

}
C(Al , Sl) < W(dirA, dirS) > C(Ar , Sr): {

propensity Da Al produce W(1, 0);
propensity Da Ar produce W(−1, 0);
propensity DsSl produce W(0, 1);
propensity DsSr produce W(0,−1);

}

group 2:
W(dirAl , dirSl) < C(A, S) > W(dirAr , dirSr): {

produce C(A + dirAl − dirAr , S + dirSl − dirSr);
}
W(dir): {

produce W(0);
}

1992, Fig. 12) exhibit irregularities that are consis-
tent with the stochastic simulation in Figure 7C. The
stochastic model thus gives a satisfactory explana-
tion for irregularities that are observed in the natural
patterns, but are not captured by the deterministic
model.
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Figure 7: Simulations of the Amoria undulata seashell pattern formation showing the stochastic solutions with (A)
Ω = 10, (B) Ω = 100 and (C) Ω = 1000, and (D) the deterministic solution to the activator-substrate process. Each
pattern has 100 columns and 160 rows.

3.4 Auxin-driven morphogenesis

In this last example, we consider the regulation of
leaf shape by a key component of plant morphogen-
esis, the hormone auxin (Sachs, 1991; Zažímalová
et al., 2014). The export of auxin from a cell relies on
the activity of carriers in the cell membrane. Among
them, the PIN1 protein appears to play the most
prominent morphogenetic role. The allocation of
PIN1 to different regions of the membrane is regu-
lated by auxin itself (Paciorek et al., 2005), creating
a feedback loop that plays an essential role in many
aspects of plant morphogenesis. Molecular-level
details of this process are the subject of ongoing
research (Abley et al., 2013; Cieslak et al., 2015),
but within the leaf margin the end result is a pref-
erential allocation of PIN1 to regions of the cell
membrane abutting neighbouring cells with a high
concentration of auxin (Scarpella et al., 2006; Hay
et al., 2006). As a result of this “up-the-gradient"
allocation (Smith et al., 2006; Jönsson et al., 2006), a
pattern of auxin concentration maxima and minima
emerges. The maxima promote an outgrowth of fu-
ture serrations, lobes or entire leaflets, thus shaping
the developing leaf (Hay et al., 2006; Bilsborough
et al., 2011; Bar and Ori, 2014; Runions et al., 2017;
Conklin et al., 2019).

The first model of the above process was formu-
lated in terms of differential equations (Bilsborough
et al., 2011). Here we construct a stochastic model
paralleling the version described by Prusinkiewicz
and Lane (2013). The leaf margin is represented as
sequence of cells that grow and divide upon reach-
ing a threshold length. The volume of each cell is
computed dynamically as the product of its cross-
sectional area S, assumed to be constant, and length

x, affected by growth and divisions. Within each
cell, the model accounts separately for the number
of PINs in the cytoplasm (PIN) and in the membrane
regions abutting the left and right neighboring cells
(PINl and PINr, respectively). We distinguish be-
tween molecule count, denoted without brackets, for
instance A for auxin molecules A, volumetric con-
centration [A] = A

xS , and — in the case of molecules
allocated to membrane regions — area concentra-
tions, for instance [[PINl ]] =

PINl
S .

PIN concentration on the membrane is the result
of two processes: exocytosis, or the allocation of PIN
from the cytoplasm to the membrane, and endocy-
tosis, or the return to the cytoplasm. Consistent
with the up-the-gradient polarization model, we as-
sume that the propensity of exocytosis PIN→ PINl ,
which allocates a PIN molecule in cell i to the mem-
brane region abutting its left neighbor i− 1, is pro-
portional to the region area S, the PIN concentration
in the cytoplasm, [PIN], and the auxin concentration
in the neighboring cell, [Al ] :

α1l = σp[Al ][PIN]S =
σp

xl xS
AlPIN. (13)

We further assume that endocytosis PINl → PIN,
which deallocates a PIN molecule from the mem-
brane to the cytoplasm, has a propensity character-
istic of a decay process:

α2l = µpPINl . (14)

Analogous equations apply to the membrane seg-
ment abutting cell i + 1:

α1r = σp[Ar][PIN]S =
σp

xrxS
ArPIN, (15)

α2r = µpPINr. (16)
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The number of auxin molecules in the cell changes
as the result of their production, turnover, and trans-
port to and from the neighboring cells. We assume
that auxin is produced at a constant rate through-
out the cell volume, which yields the propensity of
event ∅→ A equal to

α3 = σaxS. (17)

Auxin turnover A→ ∅ is treated as a random decay
of auxin molecules, which yields propensity

α4 = µa A. (18)

Consistent with Fick’s law, the propensity of export-
ing auxin diffusively to a neighboring cell is propor-
tional to auxin concentration [A] and interface area
S:

α5 = D[A]S =
D
x

A. (19)

A related formula describes the propensity of auxin
transport facilitated by PIN, except that, in this case,
the transport rate is modulated by the area density
of PIN in the respective membrane:

α6l = T[[PINl ]][A]S =
T
xS

PINl A. (20)

Analogously, propensity of transport to the right
neighbor is

α6r = T[[PINr]][A]S =
T
xS

PINr A. (21)

The Petri net summarizing these processes is
shown in Figure 8, and the essential part of the
resulting Gillespie L-system is given in Program
4a. The first rule in Gillespie ggroup 1 captures the
exocytosis and endocytosis of PINs, and the produc-
tion and turnover of auxin. The application of this
rule begins with a calculation of the number of PIN
molecules in the cytoplasm using the equation

PIN = bxS[PIN0]c − PINl − PINr, (22)

where [PIN0] is the volumetric concentration of PIN
in the cell, assumed to be constant. The second
Gillespie rule stochastically selects a transport event.
This rule is centered on a wall rather than a cell, and
requires slightly more complicated indexing than
that in Equations 19–21. The first subscript points
to the left or right incident cell, and the second
one, if present, to the left or right membrane region
within that cell. This rule works in concert with the

productions in group 2 to effect molecule transport
between cells, in a manner similar to the diffusion-
decay and reaction-diffusion Gillespie L-systems.

The final element of the model is the develop-
ment of the leaf margin, giving the simulated leaf its
shape. Beginning with an initial shape resembling
a leaf primordium, the cells elongate at a constant
rate. Moreover, they are displaced in the normal
direction at a rate proportional to the concentration
of auxin, creating leaf lobes as described by Bils-
borough et al. (2011) and Prusinkiewicz and Lane
(2013). The rules implementing this growth are not
shown in Program 4, as they are not specific to Gille-
spie L-systems. However, cell division is described
by the rule in group 3. Upon reaching threshold
length xmax the cell divides symmetrically. Auxin
molecules are apportioned according to the size of
child cells: due to the symmetry, each daughter cell
inherits 1

2 of all molecules (only slightly more com-
plex, but more consistent with the spirit of stochastic
simulation would be to divide molecules A between
left and right cell using a binomial distribution).
Auxin concentration in the daughter cells is thus the
same as it was in the mother cell. Likewise, Equa-
tion 22 apportions PIN molecules to the daughter
cells proportionally to their volume. The numbers of
PIN molecules allocated to the left and right mem-
brane regions of each daughter cell is assumed to
be the same as it was in the mother cell, so that the
cell division does not disrupt the auxin flow. This

cell i

PIN
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PINli,0

Ø

PINri,0

Ai+1,0

PINl PINr

Ai,0Ai−1,0
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A A
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Figure 8: A stochastic Petri net model of the auxin-
driven patterning of a leaf margin.
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Program 4a Gillespie L-system productions imple-
menting a stochastic model of auxin-driven leaf
margin development.

ggroup 1:
C(Al , PINll , PINlr , xl) W(dirl)

< C(A, PINl , PINr , x) >
W(dirr) C(Ar , PINrl , PINrr , xr): {

int PIN = bxS[PIN0]c − PINl − PINr;
propensity σp

xl xS AlPIN // exocytosis: left

produce C(A, PINl + 1, PINr , x);
propensity µpPINl // endocytosis: left

produce C(A, PINl − 1, PINr , x);
propensity σp

xr xS ArPIN // exocytosis: right
produce C(A, PINl , PINr + 1, x);

propensity µpPINr // endocytosis: right
produce C(A, PINl , PINr − 1, x);

propensity σaxS // auxin production
produce C(A + 1, PINl , PINr , x);

propensity µa A // auxin turnover
produce C(A− 1, PINl , PINr , x);

}
C(Al , PINll , PINlr , xl)

< W(dir) >
C(Ar , PINrl , PINrr , xr): {

propensity T
xl S

PINlr Al +
Da
xl

Al

produce W(1); // auxin transport: right
propensity T

xr S PINrl Ar +
Da
xr

Ar

produce W(−1); // auxin transport: left
}

group 2:
W(dirl) < C(A, PINl , PINr , x) > W(dirr): {

produce C(A + dirl − dirr , PINl , PINr , x);
}
W(dir): { produce W(0); }

group 3:
C(A, PINl , PINr , x): {

/* grow the cell margin */
/* details not shown */
if (x ≥ xmax) {

float xl = 0.5x;
int Al = b

xl
x Ac;

produce C(Al , PINl , PINr , xl)
W(0)
C(A− Al , PINl , PINr , x− xl );

}
produce C(A, PINl , PINr , x);

}

implies preserving PINs in the existing membrane
regions, and allocating PINs to the emerging wall
between the daughter cells.

Growth and cell divisions could be simulated us-
ing stochastic productions as well, but the model
achieves better performance by employing standard,
deterministic L-system productions for this purpose.

Program 4b Control of the production application in
Program 4a.

float t, gt, ∆gt;
int n;
Start: {t = 0; gt = ∆gt = 0.5; n = 1;}
StartEach: {UseGroup(n);}
EndEach: {

switch (n) {
case 1:

n = 2;
break;

case 2:
t = GillespieTime ();
n = (t < gt) ? 1 : 3;
break;

case 3:
gt = gt + ∆gt;
n = (t < gt) ? 1 : 3;
break;

}
}

The resulting combination of stochastic and deter-
ministic productions requires a careful scheduling of
events (Lu et al., 2004). This is achieved by preceding
the productions in Program 4a with a code control-
ling their execution, listed in Program 4b. Molecular
processes are simulated first, by alternating between
productions in ggroup 1 and group 2 as in Programs
2a and 3. This phase continues until the current
simulation time t, returned by the GillespieTime
function, reaches time gt of the next growth-and-
cell-division event. Productions in group 3 are then
executed, and time gt is incremented by the pre-
defined interval ∆gt. At this point, the simulation
of molecular processes captured by productions in
ggroup 1 usually resumes. It is possible, however,
that simulation time t is still greater than growth-
and-division time gt (this is particularly likely when
the number of molecules in the model is small, im-
plying large inter-reaction times and steps in the
values of t). In this case, time gt is incremented
again, and growth and cell division are simulated,
until the condition t < gt becomes true.

Figure 9 shows sample simulation results, ob-
tained using parameter values: T = 0.2, D = 35,
σa = 4, µa = 0.25, [PIN0] = 100, σp = 40, and
µp = 5. All cells had cross section S = 1 and
were dividing upon reaching the threshold length
xmax = 22.5. Their initial lengths xi,0 were close to
xmax. The boundary cells were set to maintain zero
auxin concentration, and the remaining 6 cells of the
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Figure 9: Visualization of the ivy leaf model showing growth of the margin over time. Figures A and B are
examples of forms resulting from different runs of the same stochastic model. Each cell is represented as a
trapezoid, coloured according to its auxin concentration: white to dark blue corresponds to low to high
concentration. PIN concentrations are visualized as red lunes on cell edges; wider lunes represent larger
concentrations.

leaf primordium were initialized with 100xiS auxin
molecules each. Initially no PIN molecules were allo-
cated to the cell membranes. Although these values
— and details of the underlying equations — have
been chosen arbitrarily, the model does illustrate
the general applicability of Gillespie L-systems to
the simulation of auxin-driven patterning processes,
and their ability to capture random variations in this
context.

4 Conclusions

We have proposed an integration of Gillespie’s
Stochastic Simulation Algorithm and L-systems as a
method for simulating stochastic processes in struc-
tures with a constant or variable number of mod-
ules representing cells or higher-level compartments.
While “ordinary" L-system productions are applied
to all modules in parallel, Gillespie-style produc-
tions are selected according to a set of propensity
functions and applied to one module per simulation
step. We have illustrated the operation of Gillespie
L-systems with examples progressing from a single-
compartment Lotka-Volterra model to diffusion-
decay, reaction-diffusion and auxin-driven morpho-
genetic processes. For simplicity, we have only con-

sidered linear structures (files of cells), although the
formalism inherits from L-systems the capability of
simulating branching structures as well. The combi-
nation of Gillespie’s algorithm and L-systems makes
it possible to account for the noise occurring in sys-
tems in which the number of molecules is small, and
captures the variation in patterns and forms stem-
ming from this noise. Prospective improvements
and extensions include acceleration of simulations.
One possibility is to limit the explicit computation of
propensities to those affected by the previous simu-
lation step, while propagating the remaining propen-
sities intact (Gibson and Bruck, 2000). The challenge
is to automatically construct the dependency graph
that would identify the propensities in need of up-
dating, given an arbitrary Gillespie L-system. Other
paths to acceleration are offered by improvements
to the subvolume method (Elf and Ehrenberg, 2004)
and fast approximations of the Stochastic Simula-
tion Algorithm (Gillespie, 2007; Marquez-Lago and
Burrage, 2007; Lampoudi et al., 2009). Of interest is
also an extension of Gillespie L-systems to two- and
three-dimensional cell complexes (Desbrun et al.,
2008; Lane, 2015), which would allow for a stochas-
tic simulation of processes taking place in growing
tissues.
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