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Fig. 1. A model and a photograph of aMimulus guttatus flower. The comparison illustrates the degree of realism achievable by simulating known or biologically
plausible patterning processes. Photograph by James Gaither, used by permission.

Although many simulation models of natural phenomena have been devel-
oped to date, little attention was given to a major contributor to the beauty
of nature: the colorful patterns of flowers. We survey typical patterns and
propose methods for simulating them inspired by the current understanding
of the biology of floral patterning. The patterns are generated directly on
geometric models of flowers, using different combinations of key mathemat-
ical models of morphogenesis: vascular patterning, positional information,
reaction-diffusion, and random pattern generation. The integration of these
models makes it possible to capture a wide range of the flower pigmentation
patterns observed in nature.
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1 INTRODUCTION
Modeling patterns of nature is an interesting and challenging en-
deavor. At the level of fundamental science, models can contribute
to understanding the often non-intuitive processes of pattern emer-
gence. As emergent phenomena are notoriously difficult to compre-
hend, each model is a mini-discovery, potentially complementing
existing biological knowledge or becoming a hypothesis for biol-
ogists. From an image synthesis perspective, patterns generated
directly on surfaces with the required geometry offer several ad-
vantages over texture mapping [Turk 1991]. The impact of light
conditions on texture acquisition, and issues of distortion when
mapping between surfaces with different geometries, are eliminated.
Moreover, the generated patterns can be diversified by randomizing
surface shapes, parameter values, initial conditions of the simula-
tion, and/or by using stochastic simulation techniques, thus avoiding
repetitions stemming from reusing the same scanned texture.
Here we present a method for generating flower pigmentation

patterns. We begin by classifying patterns described in biological
literature from the viewpoint of known or plausible patterning
mechanisms. After identifying relatively simple patterns that have
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Fig. 2. Some biological terminology relevant to flower pigmentation patterns.
The set of all petals is called the corolla, the set of sepals is the calyx, and
the corolla and calyx jointly form the perianth. Based on [Sugden 1984].

been modeled before, and excluding outliers, we focus on four mech-
anisms that appear to underly the remaining patterns: pigmentation
driven by the vascular system, positional information, reaction-
diffusion, and random pattern generation. We present computa-
tional models of these mechanisms and demonstrate, through a
number of case studies, the astonishing diversity and complexity
of patterns they can generate by acting alone or in combination.
These case studies substantially extend the range and complexity of
flower pigmentation patterns modeled to date.
From a technical perspective, the most complex element of our

method is the simulation of anisotropic diffusion of pattern-inducing
substances (morphogens [Turing 1952]) on a triangulated 2-manifold,
taking into account the stochastic character of diffusion. Although
each of these aspects of diffusion has been modeled previously,
the integration of reported solutions is difficult because of their
incompatible assumptions. For example, the method for simulating
anisotropic diffusion on triangle meshes presented by Andreux et al.
[2015] does not account for the stochastic character of diffusion,
whereas the method for simulating stochastic reaction-diffusion pre-
sented by Ghosh et al. [2015] is limited to square grids. To provide
a firm basis for simulations and clearly identify their parameters,
we derived equations for anisotropic stochastic diffusion on trian-
gle meshes from first principles. At the implementation level, our
system makes it possible to interactively specify not only the pa-
rameters of the equations governing the simulations, but also the
equations themselves, using a simple script. This capacity facilitates
interactive development and exploration of models.

2 BACKGROUND

2.1 Biology of pigmentation
Colorful flowers evolve to attract animal pollinators — mainly in-
sects and birds — and to guide them to specific locations within
the flower [Willmer 2011]. Some flowers exhibit structural coloring
due to the diffraction of light on the striated petal surface [Airoldi
et al. 2019; Lee 2010], but the primary sources of colors are biologi-
cal pigments [van der Kooi et al. 2016, 2014]. The most prominent
of them are: anthocyanins, giving flowers hues ranging from blue
to red, carotenoids (yellow, orange and red), and betalains (yellow
and red) [Davies et al. 2012; Grotewold 2006; Lee 2010]. The bio-
chemical pathways that synthesize these pigments are known and
are believed to be similar across a wide range of plants [Albert
et al. 2014a; Davies et al. 2012; Yamagishi 2013; Yuan et al. 2016]. In
contrast, the mechanisms that regulate the spatial localization of

pigments, i.e., pigmentation patterns, are only partially understood
[Davies et al. 2012; Yuan et al. 2016]. To comprehend the spectrum
of flower pigmentation patterns, we have surveyed the patterning
mechanisms described in the literature, and divided them into the
following classes (see Fig. 2 for terminology):

(1) Patterns associatedwith organ identity. Examples include
color variation between petals in bilaterally symmetric flow-
ers (Fig. 3A), petals colored differently from sepals (Fig. 3B),
and lips colored differently from the remaining elements of
the perianth in orchids (Fig. 3C). These differences appear to
be linked to genes controlling flower morphology [Davies
et al. 2012].

(2) Patterns associatedwith flower age. Some flowers change
color as they age. These changes produce color variation in
inflorescences (flower clusters), inwhich flowers are produced
sequentially (Fig. 3D).

(3) Patterns associated with exposure to light. An interest-
ing phenomenon, termed bud blushing, is the pigmentation
of the parts of petals exposed to light before the flower opens
(Fig. 3E). Blushing may persist or gradually subside after the
flower has opened.

(4) Patterns associated with vasculature. In many species,
pigment distribution correlates with veins in petals or sepals
[Shang et al. 2011] (Fig. 3, A and F).

(5) Patterns associated with position within petals. These
patterns are characterized by the axis or axes along which
pigmentation changes, and either the gradual (Fig. 3G) or
discontinuous (Fig. 3H) character of this change. For example,
the flower center may have a different color from the outer re-
gions, petals may carry regular spots (Fig. 3I), and landmarks
such as “landing platforms” directing pollinators to nectar or
pollen may be colored differently from the surrounding areas
(white area in Fig. 3J) [Davies et al. 2012].

(6) Reaction-diffusion patterns. Recent studies of flower pig-
mentation patterns in themonkeyflower genusMimulus [Ding
et al. 2020; Yuan et al. 2014] have shown that a prominent
element of these patterns — dispersed spots — self-organize
through a reaction-diffusion mechanism (Fig. 1). The visual
character of many other patterns also suggests reaction-dif-
fusion (e.g., Fig. 3, J and K).

(7) Random patterns. A striking example is provided by pat-
terns that result from the random excision of transposable
elements (transposons) from the genome of individual cells.
This excision affects individual cells and their descendants
(Fig. 3L) [Rolland-Lagan et al. 2003]. Random factors may also
affect the outcome of other patterning mechanisms, for exam-
ple, due to the stochastic character of biochemical processes
at the molecular level.

The assignment of pigment colors to different organs or flowers of
different age, characteristic of patterns in Class 1 and 2, is simple
from a computer graphics perspective. The dependence of pigmen-
tation on external conditions (light) distinguishes patterns in Class
3 from the remaining mechanisms. Consequently, in this paper we
focus on mechanisms that can generate the patterns in classes 4–7.
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Fig. 3. Examples of floral patterns. (A) Different coloring of petals in a bilaterally symmetric flower and patterning associated with veins: Viola tricolor (pansy);
(B) Different coloring of petals (white and red) vs. sepals (red) in a radially symmetric flower: Aquilegia sp. (columbine); (C) Distinctive coloring of an orchid lip:
Cypripedium reginae; (D) Color change from white to red as flowers age: Onosma alborosea; (E) Bud blushing: Malus domestica (apple); (F) Pigmentation
associated with veins: Oxalis adenophylla; (G) Gradual color change along proximo-distal axis: Plumeria alba (frangipani); (H) Bicolor patterning: Gaillardia
aristata; (I) Regular spots: Wurmbea elatior ; (J) Irregular spots and a landing platform (white): Galearis rotundifolia (small round-leaved orchid); (K) Irregular
blotches suggestive of a reaction-diffusion mechanism: Fritillaria meleagris (checkered lily); (L) Random pattern due to excision of transposons: Antirrhinum
majus (snapdragon). Photograph (L) courtesy of the John Innes Centre, Norwich.

2.2 Computational models of morphogenesis
In spite of recent advances, biological understanding of flower pig-
mentation patterns is very incomplete. We thus complement biolog-
ical knowledge with a repertoire of concepts rooted in theoretical
studies of morphogenesis to develop specific models.

2.2.1 Canalization. A key factor in plant morphogenesis is the
plant hormone auxin. Auxin-driven morphogenesis relies on feed-
back between concentrations or fluxes of auxin, and its subsequent
transport. For example, in one variant of this process called facili-
tated diffusion, existing fluxes increase the further flow of auxin by
locally increasing the diffusion coefficient (see [Cieslak et al. 2021]
for a recent review). Sachs [2003] compared this mechanism to the
formation of gullies when water flows down a sandy slope, and
postulated that a similar mechanism patterns vascular strands in
plants. In terms of fluid dynamics, auxin-driven patterning has been
modeled both from the Eulerian perspective, with a focus on fluxes
at different points of the underlying tissue, and from the Lagrangian
perspective, with a focus on the motion of particles that represent
auxin and that trace the vascular strands as they move [Cieslak
et al. 2021]. We rely on this second perspective when procedurally
generating petal veins.

2.2.2 Positional information. Wolpert [1969] proposed a model of
morphogenesis based on the idea that cells have information about
their position within tissues. This information is typically repre-
sented by concentrations of a morphogen diffusing from predefined
sources to sinks. Gradual changes in morphogen concentrations
are transformed into discrete patterns by thresholding. A canonical

example is the “French flag problem”, in which areas with high,
medium and low levels of morphogen concentration are assigned
three different colors [Wolpert 1969]. Conceptually, the positional in-
formation model may appear incomplete, for it relies on predefined
positions of sources and sinks, i.e., it does not capture pattern emer-
gence de novo. Nevertheless, a hierarchy of morphogenetic processes
based on positional information, in which an initial morphogen gra-
dient is present in the fertilized egg, and regions established at one
level are further patterned at the next level, was found to model
segmentation of insect embryos correctly [Lawrence 1992]. The
role of morphogen gradients in plant morphogenesis is less well
established, but we consider the possibility that they play a role in
plant pigmentation.

2.2.3 Reaction-diffusion. Reaction-diffusion, proposed by Turing
[1952], was the first model of morphogenesis. Reaction-diffusion
systems consist of two or more morphogens that diffuse and re-
act with each other. The equations for an isotropic, deterministic
reaction-diffusion system with n ≥ 2 morphogens u1, . . . ,un have
the general form

∂ui
∂t
= Fi (u1, . . . ,un ) + Di∇

2ui , i = 1, . . . ,n, (1)

where functions Fi define the reaction component of the system and
scalars Di are the morphogen diffusivities. Anisotropic diffusion is
introduced by replacing the Laplacian with the anisotropic Laplace-
Beltrami operator ∇ · Di∇ui , where Di is the diffusion tensor [An-
dreux et al. 2015]. Turing discovered that, with appropriately chosen
equations, the uniform distribution of morphogens is unstable, and
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infinitesimal disturbances lead to the emergence of patterns. Subse-
quent studies have shown that various types of reactions, including
the widely used activator-inhibitor and activator-substrate systems
[Gierer and Meinhardt 1972; Meinhardt 1982], exhibit similar be-
havior. Considering reactions proposed by Gray and Scott [1984],
Vastano et al. [1987] demonstrated mathematically, and Pearson
[1993] showed with computational models, that patterns may also
arise in a different mode, in which the uniform distribution of mor-
phogens is stable. In this case, patterns do not emerge de novo, but
non-infinitesimal inhomogeneities become elaborated into complex
patterns over time. Concurrently with the work of Pearson [1993],
Lee et al. [1993] presented experimental evidence of this mode. We
considered both the emergent and the inhomogeneity-elaborating
modes when constructing our models.

2.2.4 Model integration. Wolpert [1969] introduced positional in-
formation as an alternative, rather than complement, to reaction-
diffusion. Nevertheless, both concepts have long been used in com-
bination. For instance, Turk [1991] modulated diffusion rates in
a reaction-diffusion model of a zebra coat pattern to locally con-
trol the width of stripes according to their position on the zebra
body. Likewise, Fowler et al. [1992] andMeinhardt [2009] modulated
the rate of substrate production to locally control the density of
stripes when modeling pigmentation patterns in seashells. Sander-
son et al. [2006] presented and analyzed many further examples
of the control of reaction-diffusion systems, illustrating them with
highly realistic spatially inhomogeneous pigmentation patterns in
fish. Green and Sharpe [2015] analyzed the interplay between posi-
tional information and reaction-diffusion from a theoretical perspec-
tive, distinguishing modes in which positional information controls
reaction-diffusion, acts concurrently with it, or arises from it.
In plants, the contributing models may appear in different com-

binations. For example, the pattern of dots in Galearis flowers is
limited to parts of the perianth (Fig. 3J), suggesting that reaction-
diffusion is controlled by positional information. The pattern of
blotches in Fritillaria (Fig. 3K) appears to be correlated with the un-
derlying pattern of proximo-distal veins. We designed our modeling
system to facilitate modeling such combinations.

2.2.5 Growth. Flower pigmentation is correlated with flower shape,
thus a fully emergent model of pigmentation patterning should in-
corporate flower development. Although methods for simulating
flower development have been devised both from the biological
[Green et al. 2010; Kennaway et al. 2011] and computer graphics
[Owens et al. 2016; Prusinkiewicz et al. 1993] perspectives, the dy-
namics of petal growth is difficult to measure and is known only
in isolated cases [Rolland-Lagan et al. 2003]. Likewise, studies link-
ing the dynamics of flower development to pigmentation patterns
[Suzuki et al. 2016] are limited. Consequently, in the scope of this
paper we neglect growth, in spite of its impact on patterning shown
in other contexts, for example the patterning of sea shells [Fowler
et al. 1992; Meinhardt 2009], fish skin [Kondo and Asai 1995] and
the skin or fur of other animals [De Gomensoro Malheiros et al.
2020]. Instead, we follow the approach of Turk [1991], who hypoth-
esized that, in some cases, the impact of anisotropic growth on the
generated pattern can be approximated using anisotropic diffusion.

2.3 Previous models of flower pigmentation patterns
Within plants, Prusinkiewicz and Lindenmayer [1990] simulated
different coloring of ray vs. disk florets in flower heads, and Pru-
sinkiewicz et al. [2001] simulated inflorescences with flower color
depending on age. Rodkaew et al. [2002], followed by Runions et al.
[2005], proposed generative models of leaf venation, which Runions
et al. [2005] applied to model flower venation as well. Zhou et al.
[2007] were the first to recognize flower pigmentation patterns
as an interesting computer graphics topic on its own. They pro-
posed reaction-diffusion coupled with vasculature as the modeling
framework, and suggested using the space colonization algorithm
[Runions et al. 2005] to generate the venation patterns. Unfortu-
nately, they illustrated their method with variants of only a single
pattern, intermediate between those in Fig. 3, G and H, and did not
provide the parameter values needed to reproduce and analyze their
results. Such an analysis would be useful, because in our experience
similar patterns can be obtained using a single diffusing substance,
without involving a full reaction-diffusion system (for example, see
the model of Dianthus in Section 4.4).

Pursuing other approaches, Lu and Song [2014] realistically mod-
eled pigmentation patterns in Gazania rigens heads and Agrostemma
githago flowers by mapping positions within petals into colors us-
ing heuristic functions. While acceptable from an image synthesis
perspective, the use of heuristics makes this method less interesting
as a means to understand the mechanisms that underly pigmen-
tation patterns in nature. Risi et al. [2016] generated flowers with
pigmentation patterns using a variant of artificial neural networks,
and devised an evolutionary technique to diversify their shapes and
patterns. The sample flowers have a cartoon-like appearance, con-
sistent with their intended use in a video game, but the evolutionary
technique offers an interesting path to model flowers and their pig-
mentation patterns without intimate knowledge of the underlying
equations and parameters.

The work of Zhou et al. [2007] preceded the biological hypotheses
postulating reaction-diffusion patterning of flower pigmentation
[Albert et al. 2014a; Davies et al. 2012; Yuan et al. 2014]. These
hypotheses have recently been confirmed experimentally and illus-
trated with a computational model of pigmented spots in the flowers
of Mimulus (monkeyflower) implemented on a square grid [Ding
et al. 2020]. Inspired by the same literature, Ringham [2020] pro-
posed several reaction-diffusion models of pigmentation patterns
in flowers, including those of Mimulus, respecting flower geometry.
The work we present here builds upon and extends these results.

3 THE MODELING METHOD

3.1 Overview
We implemented the pipeline shown in Fig. 4 to generate flower
pigmentation patterns. The input consists of: (i) a flower shape,
specified as a polygonmesh in PLY format; (ii) a prepattern providing
additional per-mesh-element information affecting the simulation,
such as the initial and boundary conditions; and (iii) equations and
parameters for the simulation procedure. The simulation generates
a distribution of morphogen concentrations mapped to pigment
concentrations using a transfer function (color map) defined by the
modeler. The output is another PLY file, with colors representing
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Fig. 4. The modeling pipeline. The stages presented in this paper are shown
in green; the stages implemented using existing tools are yellow. The loop
indicates that procedural pattern generation (simulation) may consist of a
sequence of stages, in which the output of a previous stage becomes the
prepattern for the next stage.

pigmentation, which can be rendered directly or incorporated into
models of whole plants. Simple patterns are generated in a single
pass of the procedure. More complex patterns may require a multi-
stage process, such that mesh properties generated in an earlier
stage provide the prepattern for the next.

3.2 Flower shape modeling
Many techniques have been proposed to model floral shapes. They
include standard geometric modeling techniques using bicubic sur-
faces [Owens et al. 2016; Prusinkiewicz and Lindenmayer 1990],
sketch-based modeling [Ijiri et al. 2005], as well as reconstruction of
petal surfaces from point clouds [Zhang et al. 2014] or X-ray com-
puted tomography scans [Ijiri et al. 2014]. In the scope of this paper
we found it practical to use the general-purpose mesh editor im-
plemented in Blender [BlenderNation 2021], with modeling guided
by reference photographs placed in the background [Flavell 2010].
The interactively defined coarse polygon meshes were smoothed
using Catmull-Clark subdivision, then triangulated using the instant
field-aligned meshing algorithm [Jakob et al. 2015] implemented in
the Instant Meshes software [Jakob 2021]. This algorithm produces
meshes with almost equilateral triangles of approximately constant
size, which provides good discrete support for the subsequent pat-
tern generation.

3.3 Prepattern specification
In addition to the flower shape, our method requires input that sum-
marizes the effect of processes preceding the simulation. This input
defines the initial and boundary conditions for the subsequent simu-
lations, and may include additional spatial information, such as the
layout of nectar guides. We refer to this information as a prepattern
and specify it either interactively, by painting prepatterns on the
meshes representing the flowers [Hanrahan and Haeberli 1990], or
by organizing procedural elements of the simulation into a pipeline
and considering the output of a previous stage as the prepattern
controlling the next stage. The concept of a prepattern is an exten-
sion of diffusion maps, introduced by [Witkin and Kass 1991] to
locally control anisotropic diffusion. Crucially, they observed that
such maps are much coarser — and thus require less input — than
the resulting patterns.

3.4 Procedural pattern generation
3.4.1 Vascular pattern modeling. An important aspect of the ap-
pearance of many flowers is a conspicuous vein pattern. We model it
using the space colonization algorithm introduced by Runions et al.
[2005] to model leaf and flower vasculature. The original space colo-
nization algorithm operates in a plane. To extend it to highly curved

flower corollas and calyces, we follow Hädrich et al. [2017], who
applied the space colonization algorithm to model plants climbing
along arbitrary surfaces. The basic idea is that, at each iteration of
the algorithm, vein tips grow towards attraction points — sampled
directly from the mesh representing the flower surface — through
the ambient space, but then are projected onto the mesh. In this
way, the pattern remains on the surface.

3.4.2 Diffusion simulation. Diffusion of morphogens is a funda-
mental component of models of morphogenesis following both the
positional information and reaction-diffusion paradigms. We imple-
mented anisotropic diffusion on a triangle mesh using two methods:
(i) based on the equations provided by Andreux et al. [2015], and
(ii) derived from first principles by following the rich literature on
discrete differential geometry, including [Botsch et al. 2010; Crane
et al. 2013; Desbrun et al. 2006; Mancinelli et al. 2019; Meyer et al.
2003]. Both methods produced identical results. Below we present
the second method, which is expressed using simpler equations and
lends itself directly to a stochastic extension.
According to Fick’s law, flux of a diffusing substance is propor-

tional to the gradient of its concentration:

J = −D∇c . (2)

The diffusion constant D is a scalar in the case of isotropic diffusion,
and a tensor in the anisotropic case. Given the field of fluxes, the
rate of mass flow into an arbitrary region R of the diffusion domain
is

Ûm(R) = −

∮
∂R

J · n̂ dl , (3)

where ∂R is the boundary of regionR and n̂ is the unit-length normal
vector to the boundary element dl , pointing outwards. The average
(surface) concentration c(R) of the diffusing substance in region R
thus changes at the rate

dc(R)

dt
=

Ûm(R)

area(R)
. (4)

Equations 2 – 4 constitute a system of ordinary differential equa-
tions, which we solve iteratively using the forward Euler method.
When setting up these equations for specific models, we assume
that the mesh is a Delaunay triangulation of its vertices P . We then
associate concentrations c(P) with these vertices, gradients ∇c and
fluxes J with the triangles, and regions R(P) between which the
substance flows as the Voronoi polygons surrounding each vertex P
(e.g., vertex B in Fig. 5A). Assuming that the initial concentrations
c(P) are given, in a single simulation step we then calculate: (i) the
concentration gradient ∇c within each triangle T of the mesh; (ii)
the resulting fluxes J; (iii) the rate of mass flow Ûm(P) into Voronoi
polygon R(P) surrounding vertex P ; and (iv) the resulting change in
average concentration c(P).

Gradient calculation. To calculate the gradient, we approximate
the field of concentrations within each triangle as a linear combina-
tion of the concentrations at the vertices (Fig. 5B). Given a triangle
ABC , we calculate the contribution of a vertex, say B, to the gradient,
by setting the concentrations of the remaining vertices to zero. The
contribution of concentration c(B) thus is

c(B)

HB
ĤB , (5)
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A DC

B

Fig. 5. Elements of the diffusion simulation. (A) Discretization of the mani-
fold in proximity of sample vertex B : Delaunay triangles sharing vertex B
(white and yellow), and Voronoi polygon R(B) surrounding vertex B (green).
Derivation of the equations is focused on triangle ABC and the part of the
Voronoi polygon that △ABC intersects. (B) Gradient ∇c in triangle ABC is
approximated by the sum of the linear gradients contributed by all vertices.
(C,D) Symbols used in equations.

where HB is the length of the vector HB that is perpendicular to
edge AC and points to vertex B, and ĤB is the unit vector in the
direction of HB (Fig. 5C). As the gradient operator is linear, the
gradient of concentration ∇c in triangle ABC is the sum of the
gradients contributed by all vertices:

∇c(△ABC) =
c(A)

HA
ĤA +

c(B)

HB
ĤB +

c(C)

HC
ĤC . (6)

Let N denote a vector perpendicular to triangle ABC such that N =
2 ·area(△ABC) (for example,N can be calculated as the cross product
®AB × ®BC). We then observe that | | ®CA| |HB = 2 · area(△ABC) = N ,
which implies that 1/HB = | | ®CA| |/N and

ĤB
HB
=

| | ®CA| |ĤB
N

=
®CA

⊥

N
= −

®CA × N̂
N

= −
®CA × N
NN

= −
®CA × N
N · N

.

Here ®CA
⊥
denotes the vector obtained by rotating ®CA by 90◦ with

respect to N. Similar equalities hold for ĤA
HA

and ĤC
HC

. By substituting
them into Equation 6 and factoring out the common term we obtain:

∇c(△ABC) = −

(
c(A) ®BC + c(B) ®CA + c(C) ®AB

)
×

N
N · N

. (7)

1

1 43 5 6

2

3

2

Flux calculation. In the
isotropic case, we calcu-
late flux directly from Equa-
tion 2. In the anisotropic
case, we assume that dif-
fusion tensor D is defined
by a pair of orthogonal

(eigen)vectors λ1 and λ2, which specify diffusion rates in their
respective directions [Wilson and Gibbs 1901]. We then decompose
gradient ∇c in these directions, calculate flux in each direction using
vector length | |λ1 | | or | |λ2 | | as the diffusion constant, and add the
results:

J = −

(
∇c · λ̂1

)
λ1 −

(
∇c · λ̂2

)
λ2. (8)

Mass flow calculation. We now calculate the rates of mass flow
into the Voronoi polygons associated with each vertex of the mesh.
Consider polygon R(B) surrounding vertex B and mass flow through
its edge EQ (Fig. 5D). From triangle BEQ we find that | | ®EQ | | =

| | ®BE | | cotα . According to the definition of Voronoi diagrams

| | ®BE | | =
1
2
| | ®BC | |, (9)

and vector ®EQ is perpendicular to vector ®BC; consequently

®EQ =
1
2
®BC

⊥
cotα . (10)

Following Equation 3, the contribution of the mass flow through
edge EQ to the total flow into polygon R(B) is thus

ÛmEQ = J · n̂ | | ®EQ | | = J · ®EQ
⊥
= J ·

(
1
2
®BC

⊥
)⊥

cotα = −
1
2
J · ®BC cotα .

According to elementary geometry, α = ∠EQB = 1
2 ∠CQB = ∠CAB.

The value cotα can thus be calculated as

cotα =
cosα
sinα

=
ÂB · ÂC

| |ÂB × ÂC | |
=

®AB · ®AC

| | ®AB × ®AC | |
. (11)

The rate of mass flow through edge DQ can be calculated in the
same way. Taking into account that vector ®DQ within triangleQDB
is oriented opposite to vector ®EQ within triangle BEQ , the total rate
of mass flow from triangle ABC into the Voronoi polygon R(B) is

Ûm(△ABC → R(B)) =
1
2
J · (− ®BC cotα + ®AB cotγ ). (12)

By performing similar calculations for all Delaunay triangles sharing
vertex B and summing the results, we obtain Ûm(R(B)), the total rate
of mass flow into the Voronoi polygon surrounding vertex B.

Calculation of concentration changes. To estimate how mass flow
affects concentrations, we calculate the areas of Voronoi polygons
surrounding all vertices of the mesh. Focusing on vertex B (Fig. 5D),
and taking into account Equations 9 and 10, triangleBEQ contributes
towards polygon R(B) the area:
1
2
| | ®BE | | | | ®EQ | | =

1
2

(
1
2
| | ®BC | |

) (
1
2
| | ®BC | | cotα

)
=

1
8
®BC · ®BC cotα .

With a similar formula for the contribution of triangle BQD, the total
contribution of triangle ABC towards the area of Voronoi polygon
R(B) is

area(△ABC → R(B)) =
1
8

(
®BC · ®BC cotα + ®AB · ®AB cotγ

)
. (13)

As in the case of fluxes, the total area of Voronoi polygon R(B) is
calculated by adding the contributions of all mesh triangles sharing
vertex B. The rate of concentration change at each vertex is then
obtained by dividing the rate of mass flow into the Voronoi polygon
associated with the vertex by the polygon area (Eq. 4).

Randomization. We now take into account the stochastic charac-
ter of diffusion. Consider edge EQ of the Voronoi polygon surround-
ing vertex B (Fig. 5D). As all operations involved in the calculation
of fluxes are linear, the rate ÛmEQ of mass flow through edge EQ
can be decomposed into three rates, ÛmEQ (A), ÛmEQ (B) and ÛmEQ (C),
such that each rate is the product of the diffusing substance concen-
tration at the respective vertex and a constant that depends only on
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the geometry of triangle ABC and the diffusion tensor (λ1,λ2). For
example,

ÛmEQ (C) = c(C)ZC , (14)
where

ZC =
1
2
((( ®AB ×

N
N · N

) · λ̂1)λ1 + (( ®AB ×
N

N · N
) · λ̂2)λ2) · ®BC cotα .

Let Ω be the coefficient of proportionality that converts masses into
molecule numbers. We then rewrite Equation 14 as

Ω ÛmEQ (C)∆t = Ω c(C) area(R(C))︸                ︷︷                ︸
η

(ZC/ area(R(C)))︸               ︷︷               ︸
k

∆t , (15)

where ∆t is the time increment over which mass flow takes place,
and area(R(C)) is the area of the Voronoi polygon surrounding ver-
texC . Equation 15 has the form of an update formula for the number
of molecules η in a monomolecular reaction occurring with reaction
rate k over time increment ∆t . Taking into account the stochastic
character of individual reactions at the molecular level, their macro-
scopic outcome can be approximated as the Chemical Langevin
Equation [Gillespie 2000, 2007]:

Ω ÛMEQ (C)∆t = η k∆t +
√
η |k | ∆t N(0, 1), (16)

or

ÛMEQ (C)∆t = c(C)ZC ∆t +

√
1
Ω
c(C) |ZC | ∆t N(0, 1). (17)

Here ÛMEQ (C) is the random variable representing the average re-
action rate over time interval ∆t , and N(0, 1) is the normally dis-
tributed random number with mean zero and standard deviation
one. By using analogous estimates for all components of mass flow
across Voronoi polygon edges in the mesh, we obtained the final
algorithm for the stochastic simulation of anisotropic diffusion in a
triangle mesh, where parameter Ω controls randomness in a manner
independent of the size of triangles and time step ∆t .

3.4.3 Reaction-diffusion. We employed several variants of reaction-
diffusion systems. The equations are given in the context of specific
models (Section 4). Like diffusion, reactions can be simulated us-
ing stochastic methods, including the Chemical Langevin Equation
[Gillespie 2000, 2007], but we have only employed deterministic
reactions in the presented models.

3.4.4 Random point generation. The need to select mesh vertices
randomly occurs in two contexts. First, the vertices may approx-
imate positions of pigmentation speckles in patterns that result
from the random excision of transposable elements (transposons)
from the genome of individual cells (Fig. 3L). Second, they may
represent inhomogeneities in morphogen distributions acted upon
by the subsequent patterning processes. To generate points with
approximately uniform distribution, we enumerated all N vertices
in the mesh, then selected the desired number of sample points
using a random number generator producing uniformly distributed
integer numbers in the interval [1,N ]. The resulting points were
distributed almost uniformly on the supporting surface due to the
approximately constant density of vertices resulting from the In-
stant Meshes algorithm. To generate patterns with a given proba-
bility density function f : P → [0, 1] of position P , we applied the

sample rejection method [Ross 1997], which consists of: (i) choos-
ing a candidate sample point P (from a uniform distribution), as
described above; (ii) generating a uniformly distributed random
number p ∈ [0, 1]; (iii) accepting point P if p < f (P) or rejecting
it otherwise; and (iv) iterating the above process until the desired
number of points has been selected.

3.4.5 Model integration. In multistage models, patterns generated
in earlier stages may control boundary conditions, initial values or
parameters of generative procedures operating in the next stage
(Fig. 4). Control of scalar values by a prepattern is conceptually
straightforward. Slightly more complex is the use of a prepattern to
orient vectors λ1 and λ2, which define anisotropic diffusion at the
next stage. To this end, we first simulate the diffusion of a control
(prepattern) morphogen G between predefined sources and sinks,
and calculate its concentration gradient ∇д. We then define vectors
λ1 and λ2 as

λ1 = λ1∇̂д, and λ2 = λ2 ˆ(∇д)⊥. (18)

As the normalized vector ∇̂д is defined only when ∇д , 0, we
calculate flux J using Equations 8 and 18 in the anisotropic case, and
using Equation 2 in the isotropic case.

3.5 Morphogen-to-pigment mapping and rendering
We mapped morphogen concentrations to colors phenomenolog-
ically, by applying user-defined color maps to match colors ob-
served in nature. To render flowers realistically we used the Lux-
Core physically-based renderer integrated into Blender. Material
settings were inspired by an analysis of the optical properties of
flowers [van der Kooi et al. 2016], including the relative propor-
tions of color-selective absorption, reflectance and transmission,
and the importance of light backscattering within the inner petal
tissue (mesophyll). When appropriate, we have added geometric
details such as hairs in the rendering process, to improve the visual
presentation of the plants.

4 CASE STUDIES
We investigated the potential of the above processes to generate
flower pigmentation patterns in a series of case studies, guided by
the classification of patterns in Section 2.1. Additional data regarding
the models are provided in Table 1 (Section 5).

4.1 Platycodon grandiflorus
Veins are a feature in the appearance of many flowers, and in some
cases proximity to veins is the main factor driving pigmentation
[Schwinn et al. 2006]. An example is the Platycodon grandiflorus
(blue balloon) flower. The intricate vascular pattern generated on the
petal surface is shown in Fig. 6, and the rendered model is compared
with a Platycodon photograph in Fig. 7.

4.2 Arctostaphylos uva-ursi
Pigmentation of Arctostaphylos uva-ursi (bearberry) flowers transi-
tions smoothly between the white tube and pink lobes, providing
a simple example of non-uniform coloring associated with posi-
tion (Fig. 8). We modeled this pattern by simulating the diffusion
of a pink-inducing morphogen from the lobe margins toward the
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Fig. 6. The intricate pattern of veins generated on the partially fused corolla
of Platycodon grandiflorus.

Fig. 7. Model and photograph of a Platycodon grandiflorus flower.

pedicel, stopping the simulation when the morphogen reached ap-
proximately 1

3 of the distance toward the pedicel. The diffusion
had a stochastic component, which captured small irregularities of
coloring, most visible where the red pigment is almost disappearing.
The patterning of sepals was simulated in a similar way, with the
colors reversed (white boundary, pink centers).

Fig. 8. Model and photograph of Arctostaphylos uva-ursi flowers. Model
parameters: D = 1, Ω = 10−7, ∆t = 10−5.

4.3 Primula x polyantha
Primula x polyantha Gold Lace Black flowers have five petals, with
dark spots located symmetrically in the two lobes of each petal.
The well-defined location of these spots suggests another pattern
controlled by positional information. We modeled it by assuming
diffusion of a morphogen from the sources — short radial lines
near the center of each lobe (Fig. 9A) — towards the sink at the
petal boundary. In contrast to the bearberry model, we employed a
step transfer function mapping morphogen values to pigment col-
ors. Deterministic diffusion yields regular spots with smooth edges
(Fig. 9B), whereas noise inherent in stochastic diffusion introduces
irregularities at the spot boundaries (Fig. 9, C and D). A properly
selected noise level approximates patterns observed in the reference
plant (Fig. 10).

A B C D

Fig. 9. The impact of noise on the appearance of pigmented spots modeled
using stochastic diffusion with increasing randomness. (A) The interactively
specified (painted) prepattern. (B) Pigmented spots modeled using determin-
istic diffusion with D = 10−3, ∆t = 10−3. (C, D) Pigmented spots modeled
using stochastic diffusion with Ω = 107 and Ω = 2.5 · 106, respectively.

Fig. 10. Model and photograph of a Primula x polyantha Gold Lace Black
flower. Model parameters as in Fig. 9C.

4.4 Dianthus barbatus
Dianthus barbatus is a popular ornamental plant with radially sym-
metric flowers, each producing five petals. The proximal and distal
zones of each petal are white, whereas the central zone is red. From
a modeling perspective, the challenging feature of this pattern is
the irregularity of the zone boundaries. It is significantly larger
than that of the Primula spots (Fig. 10) and cannot be reproduced
simply by increasing the random term in the stochastic diffusion
equation (Eq. 17). Hypothesizing that vasculature plays a role, we
have modeled this pattern by assuming a single morphogen that
diffuses faster along the veins than outside of them (Fig. 11). The
morphogen source was a curved band running across each petal.
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A B C

Fig. 11. Construction of the Dianthus petal pigmentation model. (A) Con-
centrations of a morphogen diffusing along the veins from sources located
approximately 1

3 of distance from the petal base to its margin. (B) Extension
of model (A), with the morphogen assumed to also diffuse from the veins
to the surrounding tissue. (C) Final pigmentation model, resulting from a
non-linear mapping of morphogen concentrations (B) to pigment colors.
Model parameters: D = 3 (veins), 7.5 ·10−3 (elsewhere), Ω = 106, ∆t = 10−4.

Fig. 12. Model and photograph of a Dianthus barbatus flower.

The simulation was stopped before the morphogen reached the petal
margins. An irregular pattern emerged, approximating that of the
real flower (Fig. 12).

4.5 Mimulus guttatus
Mimulus (monkeyflower) is a genus of wildflowers exhibiting diverse
pigmentation patterns [Yuan 2019]. Among them, M. guttatus was
one of the first plant species for which the flower patterning was
analyzed down to the molecular level [Ding et al. 2020; Yuan et al.
2014]. The key molecular players are the proteins NEGAN and RTO,
which interact with the kinetics of an activator-inhibitor system.
Ding et al. [2020] simulated an essential feature of this pattern —
dispersed dots — using the system of equations introduced by Gierer
and Meinhardt [1972]; Meinhardt [1982]:

∂a

∂t
= ρa

a2

h + κ
+ ρa0 − µaa + Da∇

2a,

∂h

∂t
= ρha

2 + ρh0 − µhh + Dh∇
2h.

(19)

Here a represents the concentration of NEGAN, the activator, and h
is the concentration of RTO, the inhibitor. The model of Ding et al.
[2020], however, was implemented on a square grid and did not
capture a distinctive feature of theM. guttatus pattern: its correlation
with the flower shape. To incorporate this feature, we define a
prepattern that constrains base production of NEGAN, ρa0, to select

Fig. 13. Relation between painted prepatterns (top) and the resultingMimu-
lus guttatus pigmentation patterns (bottom) generated by the activator-
inhibitormodel (Eq. 19) with parameters: ρa = 0.05, ρa0 = {0, 0.0125}, κ =
0, µa = 0.05, ρh = 0.05, ρh0 = 0, µh = 0.08, Da = 2.5 · 10−5, Dh =

0.001, ∆t = 0.06.

regions of the plant corolla (Fig. 13, top). Dots are then generated
only where specified by the prepattern (Fig. 13, bottom). With a
properly chosen prepattern, the simulated pattern closely resembles
that observed in nature (Fig. 1).

4.6 Digitalis purpurea
The flowers of Digitalis purpurea (foxglove) have a scattered pattern
of dark purple spots on the bottom side of the tubular corolla. These
spots are surrounded by white halos, which can merge with the
halos around nearby spots. The remainder of the corolla is pink or
light purple. We have modeled this pattern by employing the same
activator-inhibitor system as for Mimulus (Eq. 19). To capture the
unequal distribution of spots, we initiated reaction-diffusion with
83 seed points of high activator concentration, located primarily at
the bottom of the corolla tube (Fig. 14). These points were selected
using the rejection method (Section 3.4.4), with density controlled
by an intermediate morphogen G. The concentrations of G were
determined, in turn, through diffusion between interactively spec-
ified lines with minimum and maximum concentration. Various
configurations of seed points resulted in patterns that are similar,
yet different in details, reflecting the natural diversity of foxglove
flowers (Fig. 15).

Initially, the activator is present only at the seed points. As the sim-
ulation progresses, activator concentrations increase everywhere
due to local production. The halos arise as the inhibitor, the produc-
tion of which is promoted by the activator, diffuses away from the
high-concentration spots, reducing the production of the activator
around them. At this stage, reaction-diffusion elaborates the initial
pattern of seed points, rather than generating a pattern de novo.
In the steady state, though, the pattern would stabilize with spots
distributed uniformly throughout the entire corolla. The foxglove
flower pigmentation model thus reflects a transient, rather than
steady-state, distribution of the activator.

4.7 Kohleria
Kohleria is a genus of tropical plants popular as house plants. Many
species and hybrids have intricate pigmentation patterns, which
makes them challenging from a modeling perspective. The flowers
we chose to model are red on the abaxial side and white with a
red pattern on the adaxial side. The pattern consists of a network
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A B C D

Fig. 14. Modeling Digitalis purpurea (common foxglove) flower pigmenta-
tion. (A) The painted prepattern. (B) Establishment of positional information
by an intermediate morphogen diffusing in the corolla, with the boundary
conditions partially specified by the prepattern. (C) Generation of seed
points with density controlled by the intermediate morphogen G . (D) The
resulting pattern simulated using the activator-inhibitor model (Eq. 19)
with parameters: ρa = 0.05, ρa0 = 0.0125, κ = 0.001, µa = 0.05, ρh =
0.05, ρh0 = 0, µh = 0.08, Da = 4.0 · 10−5, Dh = 1.5 · 10−3, ∆t = 0.005.

Fig. 15. Model and photograph of a foxglove inflorescence. Photograph by
Wolfgang Claussen, adapted under the Pixabay licence.

of branching and interconnected lines, radiating from the flower
center (throat), which transitions to a pattern of dots toward the
petal margins. We modeled this pattern using one of the reaction-
diffusion systems proposed by Turing [1952], extended to allow for
anisotropic diffusion of morphogenU :

∂u

∂t
= ρ(α − uv) + Du∇

2u,

∂v

∂t
= ρ(uv −v − β) + ∇ · Dv∇v .

(20)

The pattern is locally controlled by morphogen G which diffuses
isotropically from the petal margins, where its concentration is set
to 1, to the flower throat, where its concentration is set to 0 (Fig. 16
A-C). The positional information established by concentrations д of
morphogen G plays two roles. First, it controls local production of
morphogenU via the nonlinear function

α = αmin + (αmax − amin )д
γ , (21)

where αmin , αmax and γ are predefined parameters. Second, it
controls diffusion of morphogen V : the gradient ∇д determines the
directions of vectors λv1 and λv2 that define the diffusion tensor
Dv (Eq. 18), whereas the concentration д controls the magnitude of
diffusivity (vector length) λv2. With α = αmax , diffusion is isotropic
and Equations 20 produce spots characteristic of the outer petal zone.
Decreasing α to αmin changes this pattern to a network of lines

A B C D

E F G H

Fig. 16. Modeling Kohleria flower pigmentation. (A) The triangle mesh repre-
senting flower shape. (B) The painted prepattern. (C) Positional information
field established by morphogenG diffusing in the corolla with the boundary
values given by the prepattern. (D) Gradient ofG concentrations. (E–H) Pat-
tern development simulated using Turing’s reaction-diffusion model (Eq. 20)
with parameters: ρ = 0.035, α = [13.5, 16.25], β = 12, Du = 0.18, λv1 =
0.0375, λv2 = [0.0135, 0.0375], γ = 10, ∆t = 0.2.

Fig. 17. Model and photograph of a Kohleria flower. Photograph by Jane
Williams, used by permission.

running predominantly in the proximo-distal direction due to the
anisotropy of the diffusion of v , as observed near the flower center.
Fig. 16 E–H illustrates the development of the Kohleria pigmentation
pattern over time, and Fig. 17 compares the resulting flower model
to the photograph of a reference flower.

4.8 Trichoglottis smithii
Flowers of the orchid Trichoglottis smithii have a remarkable pat-
tern of irregular, interspersed orange and yellow stripes running
across the tepals. We have generated this pattern using the Turing
reaction-diffusion model described by Eq. 20, extended to allow
for anisotropic diffusion of both morphogens. To orient the pat-
tern across the tepals, we assumed that both morphogens, U and
V , diffuse more slowly in the proximo-distal direction than in the
medio-lateral direction. To capture the clearly observable increase
of the pattern scale away from the flower center, we decreased the
value of parameter ρ from 0.005 near the center to 0.001 at the tepal
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A B C D E

Fig. 18. Development of a simulated Trichoglottis tepal pigmentation pat-
tern. Progression (A) to (D) represents the 60,000 steps in Phase 1; im-
age (E) resulted from an additional 4,500 steps in Phase 2. Pattern sim-
ulated using Turing’s reaction-diffusion model (Eq. 20) with parameters:
ρ = [0.001, 0.005], α = 16, β = 12, λu1 = 0.0049, λu2 = 0.4, λv1 =
0.001225, λv2 = 0.01, ∆t = 0.05.

Fig. 19. Model and photograph of a Trichoglottis flower. The background in
the photograph was modified using Photoshop to better expose the flower.

Fig. 20. Spot coalescence during a simulation of Phalaenopsis Nankung’s
4.55PM tepal pigmentation using the activator-substrate model (Eq. 22)
operating in the Gray-Scott regime.Model parameters: ρ = 1, ρa0 = 0, µa =
0.145, ρs0 = 0.082, µs = 0.082, Da = 0.25, Ds = 0.5, ∆t = 0.3.

tips. The simulation proceeded in two phases. In Phase 1 (60,000
steps), we assumed no-flux boundary conditions for both U and
V . The resulting pattern (Fig. 18D) resembled that observed in the
reference plant (Fig. 19, right), except that the orange stripes, repre-
senting areas of low V concentrations, extended to the tepal edges.
In contrast, the reference plant had non-pigmented (yellow) borders.
To capture this detail, we introduced a second simulation phase, in
which we changed the boundary conditions along distal parts of the
margin from no-flux to Dirichlet conditions, with u = 0 and v = 30.
A yellow pattern boundary resulted, with the width controlled by
the number of simulation steps. The results shown in Fig. 18E and
Fig. 19, left, were obtained after 4,500 Phase-2 steps.

4.9 Phalaenopsis Nankung’s 4.55PM
The irregular, non-uniformly distributed pigmentation spots charac-
teristic of the Phalaenopsis Nankung’s 4.55PM orchid cultivar do not

Fig. 21. Model and photograph of a Phalaenopsis Nankung’s 4.55PM flower.

belong to the spectrum of patterns known to spontaneously emerge
from reaction-diffusion. They are visually related, however, to the
pattern of lesions occurring in the skin disease psoriasis, which has
been reproduced using a Gray-Scott model that elaborated a random
pattern of initial perturbations [Ringham et al. 2019]. Consequently,
we have modeled the patterning of Phalaenopsis Nankung’s 4.55PM
tepals in a similar manner.

We describe our model in terms of the activator-substrate model
[Gierer and Meinhardt 1972; Meinhardt 1982]:

∂a

∂t
= ρsa2 + ρa0 − µaa + Da∇

2a,

∂s

∂t
= −ρsa2 + ρs0 − µss + Ds∇

2s,
(22)

which is equivalent, up to parameter substitution, to the Gray-Scott
model [Yamamoto et al. 2011]. The initial pattern consisted of 5,000
random seed points, with the activator concentration a at each point
selected, also at random, from the interval [0, 1]. The remaining
mesh points had an initial activator concentration a = 0, and all
points have the same initial substrate concentration s = 1. With
properly chosen parameter values, closely positioned pigmentation
points coalesced and grew into larger pigmented regions, whereas
more isolated points disappeared (Fig. 20). As for other models, the
general character of the pattern does not depend on the distribution
of the seed points, although details vary. An alternative pattern and
a reference photograph are shown in Fig. 21.

4.10 Phalaenopsis Chian Xen Leopard Stripes
The orchid cultivar Phalaenopsis Chian Xen Leopard Stripes is repre-
sentative of flowers in which the pigmentation pattern is related to
vasculature. We simulated this pattern — radially spreading, branch-
ing strings of dots — with the activator-inhibitor model (Eq. 19)
controlled by two prepatterns. The first prepattern is the vascu-
lature (Fig. 22A), which increases the production of the activator
(parameter ρa0) in proximity to the veins. The second prepattern
provides positional information and is defined by a morphogen dif-
fusing away from the flower center. Its concentrations control the
diffusion rates of both the activator and the inhibitor, with the effect
of reducing the size of pigmented dots toward the flower boundary
(Fig. 22B). The range of changes depends on the organ type, differen-
tiating the patterns of dots in the left and right petals from those in
the sepals, and imposing solid colors on the flower lip and column.
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A B

Fig. 22. Key elements of the Phalaenopsis Chian Xen Leopard Stripes flower
pigmentation model. (A) A vascular pattern generated on a petal by the
space colonization algorithm. (B) The pigmentation pattern generated by
the activator-inhibitor model (Eq. 19) controlled by the vascular pattern and
positional information.Model parameters: ρa = 0.08, ρa0 = [6.5 ·10−5, 0.011],
k = 0.001, µa = 0.03, ρh = 0.12, ρh0 = 0, µh = 0.03,Da = [9.56·10−6, 3.92·10−5],
Dh = [4.78 · 10−4, 1.96 · 10−3], ∆t = 0.05.

Fig. 23. Model and photograph of a Phalaenopsis Chian Xen Leopard Stripes
flower. Petal model parameters as in Fig. 22; sepal parameters: ρa = 0.08,
ρa0 = [1.3 · 10−4, 0.022] (left/right), [1.3 · 10−6, 2.2 · 10−4] (top), k = 0.001,
µa = 0.03, ρh = 0.12, ρh0 = 0, µh = 0.03, Da = 7.13 · 10−6, Dh = 3.56 · 10−4.

5 SOFTWARE IMPLEMENTATION AND PERFORMANCE
To obtain the reported results, we implemented our method as a pro-
gram called rdpg (reaction-diffusion pattern generator). Rdpg was
written in C++ using the OpenGL 4.6 graphics and the Dear ImGui
1.8 user interface libraries. The main object on which it operates is
a half-edge data structure representing a triangulated flower shape.
Per-element properties, such as vertex positions, indices of adjacent
elements, and morphogen concentrations, are stored as OpenGL
Shader Storage Buffer Objects (SSBOs). The rdpg simulations can
be executed on a CPU or on a GPU supporting OpenGL 4.6.

Model development is facilitated by allowing interactive specifica-
tion and modification of equations without restarting the program.
Inspired by shading languages [Cook 1984], procedural textures [Per-
lin 1985], and L-systems [Prusinkiewicz and Lindenmayer 1990], we
specify these equations as simple scripts. For example, after defining
constants a_min, a_max, gamma, rho, and beta, Equations 20 and 21
underlying the Kohleria model are specified as follows:
Prepattern p;
Morphogens u, v;

float alpha = lerp(a_min, a_max, pow(p, gamma));
u' = rho*(alpha-u*v) + diffusion(u);
v' = rho*(u*v-v-beta) + diffusion(v);

When simulating models using the CPU, this script is translated
into a snippet of C++ code, which is compiled and dynamically
linked with the executable rdpg code. Alternatively, when using
the GPU, it is compiled into a compute shader at runtime. This
use of a script required solving two technical problems. One is the
partition of computation into the generic component, carried out
by rdpg (iteration over mesh elements and calculation of diffusion),
and the model-specific component, executed by the code specified
by the script (reactions). The second problem is the communica-
tion between these components, allowing for the use of variable
names that were not known to rdpg at the time of its compilation
within the script. Similar problems were recognized and solved in
the design and implementation of the L-system-based modeling
language L+C [Karwowski and Prusinkiewicz 2003]. We adopted
the techniques proposed there to implement scripting in rdpg.

The times needed to generate the patterns described in the present
paper are collected in Table 1. As expected, the multi-threaded
CPU mode was approximately an order of magnitude faster than
single-threaded mode. The GPU mode was approximately as fast
as the multi-threaded CPU mode. Better performance can likely
be achieved by replacing our simple SSBO-based implementation
with a GPU-optimized implementation of reaction-diffusion on a
mesh [Descombes et al. 2015]. Nevertheless, the speed of rdpg was
adequate for interactive experimentation with equations and pa-
rameters during model development.

Table 1. Timing of final patterning (diffusion or reaction-diffusion) for the
implemented models. All simulations were carried out using the AMD Ryzen
7 5800X 3.80GHz 8-core CPU and NVIDIA GeForce RTX 2070 SUPER GPU,
running under the Windows 10 operating system.

Name Fig. Trian-
gles

Steps CPU 1
thread
(m:s)

CPU 16
threads
(m:s)

GPU
(m:s)

Arcto. (1 flower) 8 53,626 1,500 00:50 0:07 0:01
Primula 10 40,023 2,000 00:37 0:05 0:01
Dianthus (1 petal) 12 9,163 20,000 01:10 0:11 0:07
Mimulus 1 175,968 17,500 23:44 3:11 2:04
Digitalis (1 flower) 15 27,814 19,000 01:22 0:11 0:23
Kohleria 17 98,250 5,697 04:14 0:30 0:19
Trichoglottis 19 21,147 64,500 02:21 0:26 0:33
Phalaenopsis N. 21 64,191 175 00:03 0:01 0:01
Phalaenopsis C. 23 168,394 6,900 10:10 1:09 0.48

6 DISCUSSION AND OPEN PROBLEMS
To date, biologists have analyzed the patterning of flowers in only
a few plant species. It is known, however, that the molecular-level
mechanisms involved in patterning are highly conserved across dis-
tant plant families [Albert et al. 2014b; Ding et al. 2020]. Moreover,
closely related plants, including varieties of the same species, often
exhibit strikingly different patterns. It is thus likely that the diver-
sity of flower pigmentation patterns results from modifications and
combinations of common mechanisms, rather than the operation of
qualitatively different mechanisms. Motivated by this hypothesis,
we explored four models of morphogenesis — vascular patterning,
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diffusion-driven positional information, reaction-diffusion, and ran-
dom pattern generation — and we have shown that, by acting alone
or in concert, they can produce a wide range of flower pigmentation
patterns.

The diversity and complexity of these patterns makes it difficult
to compare models to nature using objective, quantitative measures.
Consequently, we have followed the tradition of visual comparisons
of synthetic images with photographs, exemplified by De Gomen-
soro Malheiros et al. [2020]; Fowler et al. [1992]; Meinhardt [2009];
Owens et al. [2016]; Runions et al. [2005]; Sanderson et al. [2006], and
others. In our opinion, many models, including bearberry (Fig. 8),
Mimulus (Fig. 1), Kohleria (Fig. 17), Trichoglottis (Fig. 19), and Pha-
laenopsis (Figs. 21 and 23) approximate reality closely. However,
the boundaries of pigmented spots in Primula (Fig. 10) and dots in
foxglove (Fig. 15) seem more irregular in nature than in the models.
A stepping stone to understanding and faithfully modeling these
irregularities may be microscopic observations of pigmentation pat-
terns, which may reveal their relation to the cellular structure of
the petals or to minor veins.
The time to develop the models presented in Section 4 ranged

from hours to days. It was longer than using scanned textures, but
the result is an insight into the working of nature, gained through
the use of visual simulations, in addition to the images themselves.
Moreover, once developed, the models can generate many plausible
pattern variants (Fig. 15). The time to develop models may decrease
as the set of modeled patterns — which may serve as the basis for
modeling new ones — grows larger. An intriguing alternative that
does not require a deep understanding of the inner workings of the
models is the use of evolutionary techniques, in which model pa-
rameters and, possibly, the equations themselves, are automatically
“mutated”, and the modeler guides pattern evolution by selecting
preferred outcomes [Risi et al. 2016; Sims 1991].
Several topics are open for further research. General-purpose

modeling tools, such as those provided by Blender, make it possible
to capture the shape of any flower, but the modeling process is te-
dious and time-consuming. A specialized flower editor (for instance
extending the work of Ijiri et al. [2005] or Owens et al. [2016] to bi-
laterally symmetric flowers) would offer a more convenient solution.
A related issue is the biologically-plausible randomization of flower
shapes, reflecting the naturally occurring variations needed to cre-
ate scenes with many flowers of the same type. A more fundamental
extension would be the incorporation of pigmentation patterning
into a model of flower development. Growth plays an important
role in many instances of pattern formation, such as the patterning
of fish skin [Kondo and Asai 1995] and animal coats [De Gomen-
soro Malheiros et al. 2020], which our simplifying assumption of
simulating pattern formation on static flower shapes neglects. In
flowers, growth is essential to the development of patterns induced
by transposon excision [Rolland-Lagan et al. 2003]. Moreover, pat-
terns that we have reproduced by assuming anisotropic morphogen
propagation may in fact be due to anisotropic growth rather than
anisotropic diffusion. The incorporation of growth — and the feed-
back between patterning and growth [Runions et al. 2017] — may
provide a path towards explaining the factors we defined as prepat-
terns in our implementation. In this context, more experimental

results characterizing the development of flower pigmentation pat-
terns in nature are clearly needed. A particularly intriguing question
is the formation of reticulate vascular patterns (veins with loops). Al-
though some reticulate patterns have been simulated (e.g., [Runions
et al. 2005]), the general problem of modeling venation patterns in
flower petals and leaves remains unsolved.
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