
User’s Manual for Environmental programs

Radom´ır Měch
Przemyslaw Prusinkiewicz

May 7, 1998

Contents

1 Collisions 4
1.1 Environmental program arvo . 4

1.1.1 Execution . 4
1.1.2 Communication . 5
1.1.3 Algorithm . 6
1.1.4 Sample objects . 6

1.2 Environmental program collisions 7
1.2.1 Execution . 7
1.2.2 Communication . 7
1.2.3 Algorithm . 7
1.2.4 Sample objects . 8

1.3 Environmental program ecosystem 9
1.3.1 Execution . 9
1.3.2 Communication . 9
1.3.3 Algorithm . 10
1.3.4 Sample objects . 10

1.4 Environmental program honda81 11
1.4.1 Execution . 11
1.4.2 Communication . 11
1.4.3 Algorithm . 12
1.4.4 Sample objects . 12

1.5 Environmental program ulam . 13
1.5.1 Execution . 13
1.5.2 Communication . 13
1.5.3 Algorithm . 13
1.5.4 Sample objects . 13

2 Light environment 14
2.1 Environmental program clover . 14

2.1.1 Execution . 14
2.1.2 Communication . 15
2.1.3 Algorithm . 15
2.1.4 Sample objects . 16

2.2 Environmental program chiba . 17
2.2.1 Execution . 17
2.2.2 Communication . 18
2.2.3 Algorithm . 18
2.2.4 Sample objects . 19

2.3 Environmental program takenaka . 20
2.3.1 Execution . 20
2.3.2 Communication . 20
2.3.3 Algorithm . 21

1

2.3.4 Sample objects . 21
2.4 Environmental program MonteCarlo 22

2.4.1 Execution . 22
2.4.2 Commands in the environment argument file 22
2.4.3 Communication . 25
2.4.4 Algorithm . 27
2.4.5 Sample objects . 27
2.4.6 Program computesky . 28

3 Diffusion environment 31
3.1 Environmental program axons. 31

3.1.1 Execution . 31
3.1.2 Communication . 31
3.1.3 Algorithm . 32
3.1.4 Sample objects . 32

3.2 Environmental program soil . 33
3.2.1 Execution . 33
3.2.2 Commands in environment argument file 33
3.2.3 Communication . 35
3.2.4 Algorithm . 36
3.2.5 Sample objects . 37

4 Miscellaneous environments 38
4.1 Environmental program implicit . 38

4.1.1 Execution . 38
4.1.2 Communication . 39
4.1.3 Algorithm . 39
4.1.4 Sample objects . 39

4.2 Environmental program multiple 40
4.2.1 Execution . 40
4.2.2 Communication . 40
4.2.3 Algorithm . 41
4.2.4 Sample objects . 41

4.3 Environmental program terrain . 42
4.3.1 Execution . 42
4.3.2 Communication . 42
4.3.3 Algorithm . 42
4.3.4 Sample objects . 43

5 Undocumented environmental programs 44

2

A Program for computing light distribution 50
A.1 Background . .. 50
A.2 Operation of the model of the environment 52

A.2.1 Preprocessing . 52
A.2.2 Generating initial rays. 53
A.2.3 Tracing of rays . 53
A.2.4 Terminating the ray . 55
A.2.5 Interfacing with the plant simulator 56

A.3 Computing the ratio of different wavelengths 57
A.3.1 Background . .. 57
A.3.2 Generating initial rays. 58
A.3.3 Modifications of the local light model 58
A.3.4 Tracing rays . 60
A.3.5 Comparison with the standard method 60

3

1 Collisions

1.1 Environmental program arvo

This program is used for simulation of climbing around surfaces. For a given segment,
it determines whether the segment collides with an object and if it does the program
computes a new orientation of the segment so that the collision is avoided and the
segment’s tip keeps a given distance from the surface. The algorithm is based on the
paper by Arvo and Kirk [1].

1.1.1 Execution

Name of the executable:arvo

Command line parameters:
arvo [-e environmentfile] environmentargumentfile

Commands in the environment argument file

domain size: xrange yrange zrange specifies the range (in world coordi-
nates) of a regular grid used to store objects for the intersection test.
The numbers can be delimited also by ’,’, ’;’, or ’�’.

position: xpos ypos zpos specifies the position of the lower front left corner
of the grid. The numbers can be delimited also by ’,’, ’;’, or ’�’.

grid size: x y z size of the grid in voxels. The numbers can be delimited
also by ’,’, ’;’, or ’�’.

verbose: on=off switches on or off verbose mode (the default isoff).

seed: n sets the seed (an integer value) for the random number generator.

surface distance: D defines a distance (a real value) from the surface that
all segment enpoints are trying to keep.

max surface distance: D maximum distance from the surface segment
that an enpoint can have (usually around2 � surface distance).

tries for Q: n the number of randomly generated candidates for selecting a
new position of the segment;s tipQ.

tries for surface: n the number of tries (rays) traced in order to find the
closest surface.

obstacles: filename the filefilename contains a specification of obstacles
in aGLS format (see Section 3.2).

4

add objects: on=off If on, objects specified by the symbol following the
communication module?E are added to the grid (and removed at the
end of each simulation step). The default isoff . So far, the following
modules (located just after?E) are recognized:

S(rad) defines a sphere with radiusrad;

C(rad; height) defines a cylinder with radiusrad and height
height;

C(rad1; rad2; height) defines a cone with base radiusrad1, top ra-
diusrad2, and heightheight.

remove objects: on=off If on, all objects are removed from the grid at the
beginning of each simulation step. The default ison.

1.1.2 Communication

Turtle parameters sent to the field:position, heading and up vectors.

Communication symbol

with 0 parameters adds an object to the grid according to the module follow-
ing ?E (S—sphere, C—cylinder or cone).

with 7 parameters Parameters sent to the environment:

1 desired segment length;

2-7 not used (can be zeros or whatever).

Parameters set by the environment:

1-3 the new heading vector (of a unit length);

4 the length of the new segment. It is equal to 0 if the
segment is not found. In that case, values of other pa-
rameters are undefined;

5-7 the new up vector (basically the normal of the closest
point on a surface).

with 1 or 4 parameters In this case, the communication symbol MUST be
followed by F,f,G, or g! Parameters sent to the environment:

1 or 1-4 ignored;

Parameters set by the environment:

1 equal to 1 if there is an intersection of the segment with
an object. Otherwise returns 0.

2-4 the surface normal in the intersection point.

5

1.1.3 Algorithm

The program stores all incoming queries in a dynamically allocated array (prepared for
the case that some queries will only add a new object - part of the plant).

After the string is processed, queries are answered. For each pointP a new point
Q at a given distancelength (specified by the communication symbol) is found, on a
line perpendicular to the up vector. There is a certain number of tries for the pointQ,
for which the whole circle is swept starting in the heading direction and then +- angle
where angle is increasing up to 180 degrees.

For each trial pointQ a closest surface is found — a given number rays is shot
and the closest intersection is sought. If it is not found a new pointQ is generated.
Otherwise, the new end pointP is taken, specified as the intersection of the trial ray
with the closest surface plus the normal vector in the intersection times the desired
minimum distance from the surface. The field program then returns the new heading
vector (P minus the turtle locationT), its lengthjP �T j, and the up vector (the surface
normal).

NOTE: In the case of 1 or 4 parameters, when only segment intersection is tested,
the parametersurface distance influences the returned intersection (this can be used
to keep the plant a little away from the surface - to account for stem width). Just make
sure that the size of one voxel is bigger than thissurface distance.

Not finished: Well, out of all primitives in GLS format, so far it works only with
cylinders, spheres, prisms, and rectangles.

1.1.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programarvo are located in nodeenvironment, subnodearvo.

6

1.2 Environmental program collisions

The program tests for collisions between balls of a given radius (specified by the first
parameters of a communication module?E). If two balls collide, the program returns
a force the other ball is initiating.

The program is rather specific and is used only in one type of models — simulations
of a dynamic systems like a cluster of cherries, for example. Compare with program
honda81(Section 1.4).

1.2.1 Execution

Name of the executable: collisions

Command line parameters:
collisions [-e environmentfile] environmentargumentfile

Commands in environment argument file

verbose: on=off switches on or off verbose mode (the default isoff).

radius: rad defines a default radius of a ball.

1.2.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 2 or 3 parameters Parameters sent to the environment:

1 radius of the ball (if 0, the default radius is used);

2-3 ignored.

Parameters set by the environment:

1-2 or 1-3 force acting on the colliding ball.

1.2.3 Algorithm

The environment stores all balls corresponding to communication modules in a linked
list. After all queries are inserted, the program goes through the list and computes the
distance from a given ball to each other ball. If there is a colliding ball, the force acting
on the tested ball (with indext) is computed as:

~Ft =
X
i2Ct

2 � (Ct � Ci)

�
jCt � Cij

rt + ri
� 1

�

7

whereC
t

is a set of balls colliding with ballt, andC andr denotes the center and the
radius of a ball, respectively. The force is then return as the first two or three parameters
of the communication module.

1.2.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programcollisions are located in nodeenvironment, subnodecollisions.

8

1.3 Environmental program ecosystem

This program determines collisions between a set of plants growing in a field. Inter-
nally, the plants are represented as disks with a given radius. If two disks representing
two plants partially overlap, the plant with the lower radius (or possibly also lower
vigor) is reported as colliding. It is also possible to determine the collisions in three
dimensions, in which case the plants are represented as spheres.

1.3.1 Execution

Name of the executable:ecosystemR

Command line parameters:
ecosystemR [-e environmentfile] environmentargumentfile

Commands in environment argument file

grid size: x y z Specifies the size of a regular grid used for reducing the
time necessary for determining the colliding disks. The numbers can
be delimited also by ’,’, ’;’, or ’�’. The third value is used in the case
the plants are represented as spheres in three dimensions.

verbose: on=off switches on or off verbose mode (the default isoff).

vigor: on=off if on, an additional parameter is send with each communication
module. This parameter specifies the vigor of a plant. If two disks (or
spheres) representing two plants collide, the plant with the lower vigor
(even if its radius is bigger) is reported as colliding. The default isoff .

3d case: on(yes)=off(no) if on, each plant is represented by a sphere and the
collision tests are performed in three dimensions. The default isoff .

1.3.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 or 2 parameters The communication symbol has to have at least
one parameter if the vigor is not used or two parameters otherwise.

Parameters sent to the environment:

1 radius of the disk (sphere) representing the plant;

2 plant’s vigor (if applicable).

Parameters set by the environment:

9

1 0 if the plant collides with another plants with the bigger radius
or bigger vigor, 1 otherwise;

2 unchanged.

1.3.3 Algorithm

Each plant is represented by a single communication module with at least one param-
eter (if the vigor is not used) or two parameters (if the vigor is used). Initially these
modules are stored into a linked list. After all of them are processed (in a given simu-
lation step), a regular grid of a given resolution is created so that it tightly encompasses
all disks (or spheres) representing the plants. Note that the grid is rebuilt after each
step.

The grid is used to speed up the collision tests. Each voxel of the grid contains a
linked list of disks (spheres) occupying a portion of the voxel. For each disk it is then
determined, whether any object stored in any of the voxels occupied by the given disk
(or sphere) intersects this disk.

If a collision is found and the vigor is not considered, the program returns to the
plant simulatorcpfg a value 0, if the radius of the given disk is less than or equal to
the radius of the colliding disk. Otherwise, it returns 1.

If a collision is found and the vigor is considered, the program returns to the plant
simulatorcpfg a value 0, if the vigor of the given disk is less than the radius of the
colliding disk. If both vigors are equal, the program returns 0, if the radius of the given
disk is less than or equal to the radius of the colliding disk. Otherwise, the program
returns 1.

1.3.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programecosystem are located in nodeenvironment, subnodeecosystem. Note that
in /usr/u/vlab/bin/, the program is calledecosystemR.

10

1.4 Environmental program honda81

The program tests for collisions between leaf clusters, represented by disks of a fixed
radius. If two clusters collide, the one with lower vigor (specified by the first param-
eters of a communication module?E) is marked for removing (by setting the first
parameter of?E to 0).

Compare with programcollisions(Section 1.2).

1.4.1 Execution

Name of the executable: honda81

Command line parameters:
honda81 [-e environmentfile] environmentargumentfile

Commands in environment argument file

verbose: on=off switches on or off verbose mode (the default isoff).

radius: rad defines the radius of a disk represending each leaf cluster (all clus-
ters have the same radius, they differ only in vigor).

3d case: on=off if set toon instead of disks, each cluster is represented as a
sphere. The default isoff .

1.4.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 or 2 parameters Parameters sent to the environment:

1 vigor of the cluster;

2 if present, specifies the index of the cluster (collisions are tested
only with clusters of the same index).

Parameters set by the environment:

1 0 if there is a collision, 1 otherwise.

2 unchanged.

11

1.4.3 Algorithm

The environment stores all queries corresponding to communication modules in a
linked list. The first parameter of the communication module specifies the vigor of
the segment. After all queries are inserted, the program goes through the list and com-
putes the distance from a given query to each other having higher or equal vigor (it
means that if a segment end point is obstructed by a leaflet with lower vigor it would
continue growing — consequently?E(1) will always stop growth of other branches).
This repeats for each query. The cluster is tested only with clusters of the same index
(if the second parameter of?E is not present, the index defaults to 0).

The response is 0 (cannot grow further) or 1 (can grow).

1.4.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programhonda81 are located in nodeenvironment, subnodehonda81.

12

1.5 Environmental program ulam

This program determines whether a point in the given set of two-dimensional points
occupies the same place as other points. Basically, the program determines collisions
in a discrete grid of points.

1.5.1 Execution

Name of the executable:ulam

Command line parameters:ulam [-e environmentfile]

There is no environment argument file.

1.5.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 parameter Parameters sent to the environment:

1 not used.

Parameters set by the environment:

1 value 0 if there is a collision, value 1 if the growth can con-
tinue.

1.5.3 Algorithm

The environment stores all queries, representing two dimensional points (thez coordi-
nate is ignored) points, in a linked list. After all points are inserted, the program goes
through the list and computes the distance from a given point to each other point. This
repeats for each query.

The response is 0 (can’t grow further) or 1 (can grow).

1.5.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programulam are located in nodeenvironment, subnodeulam.

13

2 Light environment

2.1 Environmental program clover

This program determines the amount of direct light coming from the top, reaching
apices (represented as points on the ground) of a clover. The light can be obstructed by
leaves, stored as disks in a high-resolution grid.

2.1.1 Execution

Name of the executable:clover

Command line parameters:
clover [-e environmentfile] environmentargumentfile

Commands in environment argument file

grid range: x y specifies the range (in world coordinates) of a regular two-
dimensional grid used to store leaves to speed up the light test. The
numbers can be delimited also by ’,’, ’;’, or ’�’.

grid position: xpos ypos specifies the position of the lower front left cor-
ner of the grid. The numbers can be delimited also by ’,’, ’;’, or ’�’.

grid size: x y size of the grid in voxels. The numbers can be delimited also
by ’,’, ’;’, or ’ �’.

verbose: on=off switches on or off verbose mode (the default isoff).

transmittance: t transmittance of leaves (a value in the interval(0; 1]).

input image: imagename defines the name of an image used to specify the
light intensities coming from the top. Only the green channel of the
image is used.

remove old leaves: yes=no if set to yes all leaves are removed from the
grid after each simulation step. The default isno.

z is up: yes=no as a default, thez axis is considered up and the program uses
only x andy coordinates for specifying location of leaves and queries.
If the parameterz is up is set tono, they coordinate is considered
being up and the program usesx andz coordinates of each point.

14

2.1.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 parameter Parameters sent to the environment:

1-st ignored

Parameters set by the environment:

1-st set to the light intensity reaching the point.

with 2 parameters Parameters sent to the environment:

1-st specifies the type of the operation. The recognized values
are:

0 query the light reaching the point;
1 add a leaf with a specified leaf area (see the second pa-

rameter);
2 remove a leaf with a specified leaf area (see the second

parameter).

2-nd specifies the leaf area. The leaves are assumed to be circu-
lar.

Parameters set by the environment:

1-st set to the light intensity reaching the point — only if the
first parameter was set to 0, otherwise not changed.

2-nd set to 0 — only if the first parameter was set to 0, otherwise
not changed.

2.1.3 Algorithm

As the program receives all communication modules in a given simulation step, it stores
those that represent query for the amount of light in a linked list. If a query represents
a leaf, which should be added to the data structures, this leaf is stored as a disk in a
high-resolution grid (usually2000� 2000).

Each voxel of the grid contains information about the number of leaves obstructing
the given voxel. Thus for a given leaf, the values in all voxels which are covered by a
disk representing the leaf are incremented by one. Similarly, if a leaf is removed from
the grid, values in the corresponding voxels are decreased by one.

In addition to the number of leaves obstructing the voxel, the voxel contains also
the initial intensity of light. This intensity defaults to 1, but it can also be specified at
the beginning of the simulation using an image file. In this case, the green channel of

15

the image specified the intensity at a given voxel. Note that the resolution of the grid
does not have to match the resolution of the input image.

After the grid is updated, all queries, stored in the linked list, are processed one by
one. For each query, a corresponding voxel is determined. The initial intensity associ-
ated with the voxel is then multiplied by a factortn, wheret is the leaf transmittance
andn is the number of leaves obstructing the voxel. The resulting value is then returned
to cpfg as the intensity reaching the point of the query.

2.1.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programclover are located in nodeenvironment, subnodeclover.

16

2.2 Environmental program chiba

This program determines the amount of direct light reaching leaf clusters represented
as spheres (leaf balls). Based on a paper by Chibaet. al.[5].

2.2.1 Execution

Name of the executable: chiba

Command line parameters:
chiba [-e environmentfile] environmentargumentfile

Commands in environment argument file

grid size: x y z specifies the size of the grid in voxels (the grid range in
world coordinates is determined according to the location of leaf clus-
ters so that the grid tightly encloses them). The numbers can be delim-
ited also by ’,’, ’;’, or ’�’.

verbose: on=off switches on or off verbose mode (the default isoff).

number of samples: n The parametern specifies the number of samples of
the light sphere. The closest higher number to8 � k4 (wherek is an
integer) is taken. 128 is usually high enough.

lower to upper ratio: U (0.0 - 1.0) defines the ratio of intensities of lower
and upper hemisphere. Values in the interval 0.7-0.9 are generally good.
The default is 0.7.

use CIE formula: yes=no If set tono, all light sources in the same hemi-
sphere have the same intensity. If set toyes, the light intensity of
sources in the upper hemisphere is determined from the standard CIE
formula for overcast sky [6] (based on the direction towards the light
source). The default isno.

source direction: x y z intensity defines a light source with a given
intensity. This command have precedence over the previous 3 com-
mands. After all sources are defined their intensities are normalized so
that their sum is 1. Also, the direction is normalized.

transmittance: t (float) specifies the transmittance of the leaf balls (0.0-1.0).
The default is 0.6.

radius: rad specifies the default leaf ball radius for those leaf clusters for which
it is not explicitly given bycpfg. The default is 25.

17

beam radius: rad radius of a beam of rays traced to determine which leaf
ball obstruct the light coming from the light sources. The radius is
expressed as a part of the current leaf ball radius (i.e.rad is from the
intervalh0; 1i). The default is 0.

estimate intersection area: on=off Determines the way other leaf
balls affect the intensity reaching the leaf ball (see section Algorithm
below for more details). The default isoff .

2.2.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 or 4 parameters Parameters sent to the environment:

1 if zero, radius defined in the environment ar-
gument file is taken, otherwise it specifies the
radius;

2-4 not used (can be anything).

Parameters set by the environment:

1 percentage of light perceived by the centre of
the leaf ball (0-1);

2-4 the brightest direction (of a unit length).

2.2.3 Algorithm

The program stores all incoming queries in a dynamically allocated array. After all
queries are in a regular grid (usually of the size64� 64� 64) is built to speed up ray
casting.

The environment then determines the amount of incoming light and the brightest di-
rection (if the corresponding communication module have 4 parameters) for all queries.
The amount of light is computed by shootingnumber of samples(in the case of a sky
hemisphere) ornumber of light sources(when a fixed amount of light sources is speci-
fied) rays from the center of each leaf ball. Each intersected leaf reduces the perceived
light intensity. The brightest direction is the sum of all sample rays multiplied by their
intensities.

With estimate intersection area off, the ray is tested against a sphere
with the radiusintersected leaf radius+ beam radius and the function returns the
lengthL of the line segment inside this sphere. The intensity associated with the ray is
multiplied (reduced) by:

pow(transmittance; L=2 � intersected leaf radius):

18

Unfortunately, this formula is not very correct — at least it should be:

pow(transmittance; L=2:0 � (intersected leaf radius+ beam radius))

but also the fixed value of the beam radius shouldn’t be used with variable size leaf
balls.

The better approach is then to switch theestimate intersection area
on. In this case, the intersection function returns the ratio of the area of intersection of
disks, resulting from projecting leaf clusters to a plane perpendicular to the ray, to the
area of the projected leaf cluster (the one from whose center the ray is traced).

2.2.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programchiba are located in nodeenvironment, subnodechiba.

19

2.3 Environmental program takenaka

This program determines the amount of direct light reaching leaf clusters represented
as spheres (leaf balls). The algorithm is based on Takenaka’s paper [41].

2.3.1 Execution

Name of the executable:takenaka

Command line parameters:
takenaka [-e environmentfile] environmentargumentfile

Commands in environment argument file

grid size: x y z specifies the size of the grid in voxels (the grid range in
world coordinates is determined according to the location of leaf clus-
ters so that the grid tightly encloses them). The numbers can be delim-
ited also by ’,’, ’;’, or ’�’.

verbose: on=off switches on or off verbose mode (the default isoff).

parameter s: value this parameter controls the sparsity of leaf distribution on
the leaf ball. Ifr is the radius of a sphere with surface area equal to the
leaf areaLA, then the radius of the leaf ball iss � r. The default is 1.5.

transmittance: t transmittance of the leaf balls (0.0-1.0). The default is 0.1.

efficiency: e multiplicative parameter influencing the resulting light prod-
uct [41]. The default is 0.015.

source: x y z intensity defines a ligth source with a given intensity. After
all sources are defined their intensities are normalized so that their sum
is 1.

beam radius: rad radius of a beam of rays traced to determine which leaf
ball obstruct the light coming from the light sources. The radius is
expressed as a part of the current leaf ball radius (i.e.rad is from the
intervalh0; 1i). The default is 0.

2.3.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 2 parameters Parameters sent to the environment:

1 leaf area (the area of the leaf ball);

20

2 amount of leaf product necessary for the leaf maintenance.

Parameters set by the environment:

1 unchanged (leaf area);

2 product of photosynthesis (after the maintenance cost is sub-
tracted).

2.3.3 Algorithm

The program stores all incoming queries, representing the leaf balls, in a dynamically
allocated array. After that a grid is build to speed up ray casting.

The program then determines the amount of incoming light for each leaf ball. The
amount of light is computed by shooting a beam of rays from the leaf ball centre to-
wards each light source. Each intersected leaf reduces the perceived light intensity. The
weight of the final product is computed according to the appendix of the paper [41].

2.3.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programtakenaka are located in nodeenvironment, subnodetakenaka.

21

2.4 Environmental program MonteCarlo

This program determines the amount of light reaching objects in a scene. The objects
are defined using the modules following the communication modules?E. The program
MonteCarlo recognizes two objects, a triangle or a polygon, defined by modulesT
andP , respectively. In addition a set of polygons representing the module following
?E can be sent by the plant simulator.

The amount of light reaching all or selected objects is computed using the path trac-
ing algorithm, based on Monte Carlo techniques. Generally, the light coming from the
light sources (in form of rays) is traced through the scene. Every time the ray reaches an
object, it is determined whether the light is absorbed, reflected, or transmitted through
the object, based on the surface parameters associated with the object.

2.4.1 Execution

Name of the executable: MonteCarlo

Command line parameters:
MonteCarlo [-e environmentfile] environmentargumentfile

2.4.2 Commands in the environment argument file

Specifying the grid

domain size: xrange yrange zrange specifies the range (in world coordi-
nates) of a regular grid used to store objects for speed up the intersection
test. The numbers can be delimited also by ’,’, ’;’, or ’�’.

position: xpos ypos zpos specifies the position of the lower front left corner
of the grid. The numbers can be delimited also by ’,’, ’;’, or ’�’.

grid size: x y z size of the grid in voxels. The numbers can be delimited
also by ’,’, ’;’, or ’�’.

remove objects: on(yes)=off(no) if set to on or yes (the default) all ob-
jects are removed from the grid after each simulation step.

obstacles: filename additional objects are added to the grid. The objects are
input from a text file containing GLS commands. There can be only
one commandobstacles in the environment argument file.

Controlling generation of initial rays

light source: xpos ypos zpos weight defines a light source at a given
point with a given weight. Several light sources can be specified by

22

including several commandslight source in the environment ar-
gument file. In this case, the initial rays are generated according to the
weights associated with the light sources.

sky file: filename specifies the file defining intensities coming from all di-
rections of a sky hemisphere. The file containsn�m numbers defining
intensity of the sky at different directions (specified by two angles�; ,
where� 2 [0; �=2] and 2 [��; �). The file can be generated by
programcomputesky(see Section 2.4.6). The commandsky file:
takes precedence over the commandlight source . If neither of
these two commands is specified all initial rays are coming from the
top.

ray density: n controls the number of initial rays. The density specifies how
many rays will be generated per unit area. Thus the bigger the scene,
the more rays will be generated. Make sure, that you properly change
this value if you scale the scene up or down.

stratified sampling: on(yes)=off(no) if on and all rays are coming from
the top (in the case that neither of the commandslight source and
sky file is specified), the rays are generated using stratified sam-
pling, which provides better distribution of rays.

spectrum samples: s this command specifies the number of wavelengths for
which it is necessary to compute the light distribution. This command
has to precede the commandsource spectrum and all commands
defining materials!

source spectrum: �1 w1 �2 w2 ... �s ws specifies the wavelengths
(currently not used) and weight for each spectral sample. The weight
distribution is the same for all light sources.

one ray per spectrum: yes=no as a default, the light intensities reaching
the objects for different wavelengths are computed separately, one set
of initial rays for each wavelength. If this command is set toyes, a
special algorithm is used, in which each rays carries the information
about all wavelengths and the light intensities can be determined after
one set of initial rays is traced (see below for more details).

rays from objects: yes=no as a default, the rays are initiated from the
light sources or from the sky hemisphere. A large number of rays is
usually necessary to obtain a sufficient precision of results (the amount
of light reaching the objects). If there are only few objects, for which
it is necessary to determine the light reaching them, it is more efficient
to trace the rays backwards, from the object, towards the light source.
This mode is switched on by specifyingyes after the commandrays
from objects (see below for more details about the method).

23

Tracing of a ray

periodic canopy: yes(on)=no(off) if on, the rays which leave the scene
on the left, right, back, or front, are transformed to the opposite side of
the scene and tre tracing continues. This simulates and infinite canopy
with periodically repeating set of objects (make sure that the grid is
tight enough not to have too big spaces between the sets). It is more
suitable to consider only light coming directly from the top and not to
use the option of tracing the ray from the objects (although both are
not necessary). The default isoff — in which case, if a ray leaves the
scene, it is not traced any more.

maximum depth: d limits the number of hits (intersection of a ray with an ob-
ject) for each ray. If set to -1, there is no limit. The default is 3. Note
that is is better to set this limit high (e.g. 10) and to use the command
Russian roulette .

Russian roulette: thr prob an optional method used for determining the
termination of rays. After each hit, the ray’s intensity is compared with
the threshold intensitythr (a value between 0 and 1). If it is belowthr,
the rays is terminated with the probabilityprob (a value between 0 and
1). The intensity of rays which are not terminated is increased by factor
1=(1� prob).

reflectance model: blinn=phong=parcinopy there are three different ways
the reflected rays are generated (see below for more details). The Blinn-
Phong model (blinn) is the best one to use. The default isparcinopy.

no direct light: yes(on)=no(off) to compare the effect of reflected and
transmitted light on objects, it is possible to set this parameter toyes
and the direct light will not be included in the amount of light reaching
an object. The default isno (or off).

Materials

leaf material (top): r nr t nt n specifies the parameters of the de-
fault material. For each used wavelength, a set of 5 parameters has to
be included: reflectancer (0-1), reflectance scattering exponentnr (0-
1), transmittancet (0-1), transmittance scattering exponentnt (0-1),
and refractive indexn (ignored, but must be present!). To determine
the number of spectral samples, the commandspectrum samples
has to be placed before the leaf material specification.

leaf material (bottom): r nr t nt n if included, it specifies the bot-
tom part of each surface. Otherwise, the top part is used for both sides.

24

material: r nr t nt n specifies an additional material. The materials are
indexed, the leaf top material has index 1, the leaf bottom index 2 and
each subsequent material (specified using the commandmaterial
has index 3, 4, and so on). The default material can be changed by the 3-
rd and fourth parameter of modulesT andP (following the communi-
cation module?E) and representing a triangle or polygon, respectively
(see commandmaterial parameter below for other possibility).

material parameter: n in case that the polygons representing the module
X following the communication module?E are sent directly from the
plant simulator, the valuen specifies what parameter of the moduleX
determines the index of the object’s material (1 for the first parameter, 2
for the second parameter,etc.). If set to 0 (default), the default material
is used and all parameters of the moduleX are ignored.

Miscellaneous commands

verbose: on=off switches on or off verbose mode (the default isoff).

seed: v specifies the seed for the random number generator (an integer value).

number of runs: n if above 1 (default) the computation of light reaching ob-
jects is performedn times and the program returns the mean value and
the standard deviation of the ratio of the light intensities for the first
two wavelengths as the first and second parameter of the communica-
tion module associated with the object (thus at least two wavelengths
have to be specified). If the communication module has more than two
parameters, the program returns the mean intensity and the standard de-
viation for the first wavelength (3-rd and 4-th parameter of?E), second
wavelength, and so on. Used to determine the precision of the algorithm
for a given ray density.

version: ver if the parameterver is bigger than 1, it is possible to specify the
number of rays shot from each object, for which the light calculation
has to be done (in the mode when rays are shot from objects — see
commandrays from objectsabove). The default version is 1.

2.4.3 Communication

Turtle parameters sent to the field: position, heading, and up. In case the rays are
generated from objects, also the left vector has to be sent.

Communication symbol

to environment the plant simulator always sends the communication module
and the module following it:

25

communication module All parameters of the communication mod-
ule are ignored, unless the version is set to a value above 1 and the
rays are shot from objects. In this case the parameters of?E spec-
ify the number of rays per unit area shot from each object for each
wavelength. Consequently, less rays can be traced for selected wave-
lengths (even 0).

the following module The module following the communication mod-
ule ?E is used to specify the objects in the scene or to set the light
spectrum. There are two ways how to define objects:

1. for a moduleP or T following the communication module?E,
the environmental process constructs a parallelogram or a trian-
gle of a specified orientation (based on turtle vectors). The size
of the parallelogram or triangle is controlled by the parameters
of the moduleP or T .
Specifically, the moduleP defines a polygon constructed in the
following way. The polygon is a parallelogram with one diago-
nal in the direction of the turtle heading vector~H and length2a,
and the second diagonal in the direction of the left vector~L and
lengthb. The turtle position~P defines one vertex of the polygon.
The moduleT defines a triangle constructed in the following
way. One edge (of lengtha) of the triangle is in the direction of
the turtle left vector. The middle point of this edge corresponds
to the turtle position. The third vertex of the triangle is placed
on an axis, corresponding to the turtle heading, at the distanceb
from the turtle’s position.
The third and fourth parameter of the moduleP orT , if present,
specify the index of the material for the front and back sides of
the polygon or triangle.

2. For any other module, the environment expects that the plant
simulator sends a set of polygons representing the module. To
define a complex organ, homomorphism productions can specify
the geometry of the module and all the polygons representing
the module are transferred to the environment, which considers
them as part of a single object. The material indexes can be
specified by the parameters of the module following the module
?E, as specified by commandmaterial parameter in the
environment argument file.
This option takes precedence over the previous one, that is if the
polygons are send for modulesP or T , these polygons are used
to define the object.

If a moduleL follows the communication module, its parameters set
the current intensities for different wavelengths emitted from all light
sources (these intensities are shared by all light sources). The param-

26

eters specify the intensities in the order given by values following the
commandsource spectrum in the environment argument file.
If the rays are traced from objects, the the object (sensor) can be
defined only as polygonP (using the first approach).

from environment Parameters set by the environment:

single run the firstn parameters of the communication module?E are
set to the amount of light reaching the object, defined by the module fol-
lowing ?E, for each of then wavelengths.

multiple runs the first two parameters of the communication module
?E are set to the mean value and the standard deviation of the ratio of the
amount of light reaching the object for the first two specified wavelengths
(computed after the given number of runs). The next2n parameters con-
tain the mean value and the standard deviation of the amount of light
reaching the object for each of then wavelengths.

2.4.4 Algorithm

The environmental process first receives information about all communication modules
and the geometry of the modules that follow. These modules, representing leaves,
stems, the ground, or objects around the plant, are interpreted as a set of polygons
which are transferred to the environment.

After all scene polygons are input, they are stored in a regular grid to speed up the
algorithm. The computation of the light distribution starts with generating initial rays
representing light of a certain power emitted from the light sources. Each initial ray is
then traced in the grid. If the intersection with an object is detected, the light carried by
the ray is either absorbed by the object, reflected by the surface, or transmitted through
it. The fate of the ray depends on the parameters of the surface material specified in
a specification file processed by the environmental program at the beginning of the
simulation.

Each material is defined by four parameters, controlling the probability of trac-
ing a reflected ray, its scattering coefficient (affecting the direction of the reflected
ray), the probability of tracing a transmitted ray, and its scattering coefficient (see Ap-
pendix A.2.5 for more details).

Reflected or transmitted rays are traced further until the ray depth (equal to the num-
ber of hits on the ray’s path) reaches the maximum user-specified value or its power
is below a certain threshold and it is terminated according to a method calledRus-
sian roulette(see Appendix A.2.4). After all initial rays have been traced, parameters
storing the light flux absorbed by an object are sent to the plant model.

2.4.5 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programMonteCarlo are located in nodeenvironment, subnodeMonteCarlo.

27

2.4.6 Program computesky

The programcomputeskyis used to generate a file with a density functions capturing
the light intensities at different parts of the sky. The function is then directly used for
generating initial rays in programMonteCarloso that more rays are traced from the
parts of the sky with higher intensity of light.

The density file corresponds to an average light intensity of a sky at a given location
on Earth (the sun position during a day differs for different locations) for a given period
of time (the sun is lower in the winter han in the summer). It would be interesting to
consider a real time skylight distribution based on the timing of the plant simulation.
Currently, all simulations have to use a static skylight distribution, which is computed
by averaging light intensities over a certain time interval. Specifically, the program
computeskytakes as an input the longitude and latitude of the place of the simulated
experiment, the first and the last date of the simulation, and the percentage of overcast
days during the time period.

The intensities in a specified number of directions are averaged over the given time
period. For each day it is randomly decided whether the day is cloudy or with a clear
sky. If it is cloudy, the intensity is assumed constant throughout the day and is deter-
mined using the CIE formula (1), specified below. If the day is clear, it is subdivided
into small time intervals, according to a user-specified time step, and at each time the
intensities are computed using the CIE formula (2) for the correct sun position in a
given time at the given position, specified below.

To compute the intensity of light at a given part of the sky, the following formula
has been proposed by the CIE [6] (see also [27, 30, 33, 40]). The distribution on an
overcast sky is relative to the zenith intensity, also called luminance,Lz. Intensity
of light coming from a certain direction from an overcast sky is defined as luminance
L(�), where� is the angle from zenith to the considered direction:

Lz =
1

0:203
� (8:6 � cos � + 0:123)

L(�) = Lz �
1

3
� (1 + 2 cos �) (1)

Formula (1) reflects the quantitative tests measuring the ratio of luminanceL(�) to
zenith luminanceLz = L(0) presented in [26].

For a clear sky, the distribution also depends on the sun position. The zenith lumi-
nanceLz is then a function of the angle�s of the sun from the zenith and aturbidity
factor1:

Lz =
1

0:203
�
�
(1:367 � turbidity � 1:81) � tan

��
2
� �s

�
+ 0:38

�
:

1As of now I do not have more information on thisturbidity factor.

28

The luminance in direction(�; ') is:

L(�; ') = Lz �
(0:91 + 10e�3
 + 0:45 � cos2
)(1� e�0:32=cos�)

0:27385 � (0:91 + 10e�3�s + 0:45 � cos2 �s)
(2)

where� is the angle from the zenith,' is the azimuth angle going from0 at north to
�
2

at east,�s and's are the zenith and azimuth angles of the sun, and
 is the angle
between the sun direction and the direction(�; ') that can can be computed by:

cos
 = cos �s � cos � + sin �s � sin � � cos('� 's):

The sun position is computed using a routine based on a java code written by Rafael
Wiemker2 based on a working paper No. 162 by B. K. P. Horn from March 1978. The
input parameters of the routine are the latitude and longitude of a point on Earth, the
date, and the time of the observation.

To be able to generate the direction of an initial ray according to the skylight dis-
tribution, it is necessary to compute the probability distribution functionF (�; ') from
the probability density functionp(�; ') equal to normalized function of intensity:

p(�; ') =
I(�; ')R

�
�

2

�
�

2

R
2�

0
I(�; �)sin(�) d�d�

The double integral in the denominator is summing the intensity values over the whole
hemisphere. The distribution functionF is then:

F (�; ') =

Z �

�
�

2

Z '

0

p(�; ') sin(�) d�d�

The distribution function is computed by the programcomputeskyand output into a file
as an array of values. The file is read by the simulation program.

The file format is described at the beginning of each density file. See an ex-
ample object in nodeenvironment, subnodeMonteCarlo, subnodeClover, file
portulaca:sky.

Having the distribution functionF , a random direction(�; ') can be generated
according to functionF [38]:

1. A uniformly distributed random numberx in the interval

F
�
�
2
; 0
�
; F

�
�
2
; 2�

��
is selected and angle' is found such thatF (�

2
; ') = x. If functionF is specified

as an array of values, the angle' is equal to'i such thatF (�
2
; 'i) is closest to

x.
2http://kogs-www.informatik.uni-hamburg.de/ wiemker/

29

2. A uniformly distributed random numbery in the interval

F
�
��

2
; '
�
; F

�
�
2
; '
��

is selected and angle� found such thatF (�; ') = y. If functionF is specified
as an array of values, angle� is found by linear interpolation between values
F (�i; ') � y < F (�i+1; ').

The number of initial raysN is determined similarly as in case of multiple light
directions (see the previous section):

N = 2�rd

Z
�

�

2

�
�

2

Z
2�

0

I(�; �)sin(�) d�d�;

wherer is the radius of a bounding sphere andd is the ray density. The light intensity
is summed over the whole sky hemisphere.

The programcomputeskyhas the following command line parameters:

computesky [-verbose] [-from YY/DD/MM] [-to YY/DD/MM] [-pos
latitude longitude] [-tzone HH] [-clear %] [-withsun] [-samples
Nx Ny Mx My] [-tstep MM]

specifying:

� the verbose mode,

� the start and end date of the intensity averaging,

� the location on Earth,

� the time zone with respect to the European time (negative values going eastward),

� the percentage of the clear days during the given time interval, whether the sun
itself is included in the sky (this option is not working properly at the time due
to the lack of references in the literature),

� the number of samplesNx�Ny output in the density file with additionalMx�
My samples computed between each 4 output points to increase the precision of
the results,

� the time step in case a clear day is considered.

For example, the file used in most of the simulation was created using parameters:

computesky -v -from 88/07/01 -to 88/09/30 -pos 31.783 35.133
-tzone -1 -clear 80 -samples 100 100 4 4 -tstep 30

based on values inspired by [31] (location is in Izrael).

30

3 Diffusion environment

3.1 Environmental program axons

This program determines the value and gradient of a substance used for quiding the
development of axons in retina. Based on a paper by Gierer [13].

3.1.1 Execution

Name of the executable: axons

Command line parameters:
axons [-e environmentfile] environmentargumentfile

Commands in environment argument file

verbose: on=off switches on or off verbose mode (the default isoff).

tectal surface: � � u v four parameters specifying the function repre-
senting the concentration of a guiding substancep (see the algorithm
below).

range: xrange yrange specifies the range (in world coordinates) of the area
considered for the output of an image. The numbers can be delimited
also by ’,’, ’;’, or ’�’.

position: xpos ypos zpos specifies the position of the lower front left corner
of the area. The numbers can be delimited also by ’,’, ’;’, or ’�’.

outputimage: min max xsize ysize imagename Controls the visualiza-
tion of the given area of the field. The valuesmin andmax define the
range which is convented into intervalh0; 255i. Valuesxsize andysize
specify the size of the image output into fileimagename.

frame intervals: fnj n1 � n2j n3 � n4 step s1g to save time consum-
ing output of an image after each step, specific frames can be selected.
The step number is obtained fromcpfg.

3.1.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 or 3 parameters Parameters sent to the environment:

1 or 1-3 all ignored.

31

Parameters set by the environment:

1 amount of the guiding substance at the point

2-3 gradient of the quiding substance

3.1.3 Algorithm

The environment provides the axon with a guiding parameterp representing the amount
of a certain substance available at a given point. The production of the substance is
affected by the concentration of other substances, one spreading along thex axis and
one along they axis, according to an exponential distribution with the center at point
(u; v) [13]:

qx(x) = e�(u�x)=xrange;

qy(y) = e�(v�y)=yrange:

Parameters� and� control the steepness of the distribution curves. Values ofqx(x) and
qy(y) affect the production of the guiding substance by linear activation and superlinear
inhibition:

p(x; y) =
qx(x)

(1 + qx(x))2
+

qy(y)

(1 + qy(y))2
:

The coordinates(gx; gy) of the field gradient at a point(x; y) are computed approxi-
mately by averaging valuesp(x+�; y), p(x��; y) andp(x; y +�), p(x; y ��):

gx = (p(x+�; y)� p(x��; y))=(2 ��)

=
�

qx(x+�)
(1+qx(x+�))2

�
qx(x��)

(1+qx(x��))2

�
=(2 ��)

gy = (p(x; y +�)� p(x; y ��))=(2 ��)

=
�

qy(y+�)

(1+qy(y+�))2
�

qy(y��)

(1+qy(y��))2

�
=(2 ��):

3.1.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programaxons are located in nodeenvironment, subnodeaxons.

32

3.2 Environmental program soil

This program simulates diffusion processes in the soil together with a simple obstacle
avoiding mechanism.

3.2.1 Execution

Name of the executable:soil

Command line parameters:
soil [-e environmentfile] environmentargumentfile

3.2.2 Commands in environment argument file

General

domain size: xrange yrange zrange specifies the range of a grid used for
the simulation of the diffusion (in world coordinates). The values can
be delimited also by ’,’, ’;’, or�.

position: xpos ypos zpos specifies the position of the lower front left corner
of the grid. The values can be delimited also by ’,’, ’;’, or�.

verbose: on=off switches on or off verbose mode.

Input

image: min max input image [output image] specifies an rgb image file
from which all input values are read and converted into a range(min;max).
The values of the field (in this case 2-dimensional) can be output into
image specified as outputimage. The size of the grid (in voxels) in this
case isimage xsize � image ysize � 1.

array: xsize ysize zsize min max [output image] specifies the size of a
grid (in voxels), its minimal and maximal value, and an optional output
image name. This command is followed by a list of values (starting on
the following line) which will be stored in the grid (xsize �ysize �zsize
values).

layer thicknesses: th1 + th2 ... defines specific layers in which
the geotropic angle may differ (by a set of thicknesses — along the
axisy) [7].

geotropic angles: a1 a2 ... Specifies a geotropic angle for each layer
(see [7]). This command should be after the commandlayer thicknesses !

33

3D primitives: xsize� ysize� zsize min max file1 [file2 :::] out file
specifies the size of the grid (in voxels), its minimal and maximal value,
a set of input files (containing a set of object defined in the GLS format
— see below), and an output filename. Regardless of the parameter set
by the commandobstacles and sources , opaque objects rep-
resent obstacles and transparent objects define areas of concentration
equal to1 � alpha, wherealpha is the fouth channel associated with
the surface diffuse color. Ifalpha is equal to 0, the object is a source.

If the input file defines a rectangle of a size isa � b and the output
file is specified, the programsoil outputs a set of rectangles of size
1� 1 (using the GLS format), each followed by a value specifying the
concentration withing the range(min;max). Otherwise the output file
stores a set of triangles representing a transparent surface (contour) of a
given concentration (see the commandconcentration contour
value below).

Diffusion control

diffusion: step [tolerance] if step is -1, diffusion is simulated until all val-
ues in one step are not changed by more than the given tolerance (the
default tolerance is 0.001). Otherwise the program performsstep steps
of diffusion. The diffusion can be switched off by setting the step to 0
(the default).

depletion: on=off if on, a root can actually reduce a concentration in a par-
ticular voxel. Otherwise, the concentration stays unchanged. The de-
fault ison.

relaxation factor: omega controls the speed of diffusion (see [22]). The
default is 0.5.

keep depleted cells: on=off It is more correct (as found later) to keep
values of the depleted cells constant (the parameter ison) throughout
the diffusion. The dafualt isoff (for backward compatibility with older
models).

obstacles and sources: on=off Influences only 2d mode, when the field
is input using the commandimage or array .

If on, white color specifies sources (they have always concentration 1),
color (40,55,70) represents obstacles. Otherwise the green component
of a color specifies concentration levels. In the case ofarray , voxels
with values equal tomin are obstacles, and those equal tomax are
sources.

If off (the default), each color is converted to grey and its intensity
specifies the concentration.

34

Output

frame intervals: fnj n1 � n2j n3 � n4 step s1g to save time consum-
ing output of an image after each step, specific frames can be selected.
The step number is obtained fromcpfg.

output normals: on=off (default off) in case of triangle output normals may
be included for Gouraud shading

3D output: polygons=triangles (default polygons:) the contour is output ei-
ther as a collection of triangles approximating the surface or polygons
representing voxel faces close to the surface

concentration contour value: val alpha The parameterval defines
the value of the implicit field on the output surface (the surface is de-
fined by all field points with the given value). The parameteralpha
specifies the alpha value of the default contour material (a woody look-
ing material):

ambient 0:1 0:1 0:1 alpha
diffuse 0:1 0:6 0 alpha
specular 0:5 0:5 0:5 alpha
emissive 0 0 0 alpha
spec exponent 25

contour material: 17 floats specifies the contour material (in the order
as the example above)

source material: 17 floats specifies the material of a source (because sources
are specified with alpha 0)

section material: 17 floats material of the rectangular sections (2d out-
put along given rectangles).

3.2.3 Communication

Turtle parameters sent to the field: position (2d or 3d), heading (required only if
there is a communication module with more than 4 parameters — used for obstacle
avoiding).

Communication symbol

with 1,3,6 parameters (2D case)
Parameters sent to the environment:

1 desired amount of nutrients;

2 geotropic weight (between 0 and 1);

35

3 soil gradient vector (between 0 and 1);

4 ignored;

5 internode length (necessary only for obstacle avoiding);

6 an angle by which the current heading is diverted from the previous head-
ing.

Parameters set by the environment:

1 received amount of nutrients;

2-3 the sum of weighted geotropic and gradient vector;

4 set to 0;

5 returns the new heading angle by which the current heading should be
diverted from the previous heading in order to avoid obstacles. Returns 0
and prints a warning if such angle is not found.

6 unchanged.

with 1,4,7 parameters (3D case)
Parameters sent to the environment:

1 desired amount of nutrients;

2 geotropic weight (between 0 and 1);

3 soil gradient vector (between 0 and 1);

4 ignored;

5 internode length (necessary only for obstacle avoiding);

6-7 ignored.

Parameters set by the environment:

1 received amount of nutrients;

2-4 the sum of weighted geotropic and gradient vector;

5-7 returns the new heading vector to avoid obstacles or (0,0,0) if such vec-
tor is not found.

3.2.4 Algorithm

After the programsoil is started, it processes the environment argument file and sets up
its data structures.

During the simulation, each communication module is processed as soon as it is
received by the programsoil. At first, the position of the module in the grid is deter-
mined. Then, according to the value of the depletion parameter (see above), either the
amount of nutrients present in the voxel is returned or the lower of the desired amount
of nutrients and the amount in the voxel.

36

According to the actual geotropic layer, the desired geotropic direction is deter-
mined and added to the weighted field gradient in the given point. This vector (note
that the gradient is not normalized!) is returned as the second and third (and in the 3d
case also fourth) parameters of the communication module.

In the 2D case (zsize in the environment argument file commandarray is 1 or the
commandimage is used), 2d obstacle avoiding is applied to modules which have more
than 3 parameters. The end point of the internode segment (the length must be sent to
the environment as the 4-th parameter of?E) is tested whether it is inside or outside
of an obstacle. If it is inside is is rotated by different angles to find the first available
position. The angles are +2, -2, +4, -4etc.up to +180, -180 degrees. Unfortunately,
this sequence of angles is fixed. Moreover, some longer segments may intersect corners
of obstacles.

If the 3D case, 3D obstacle avoiding is applied to modules which have more than
3 parameters. It works the same as 2D avoiding where the plane of rotation is given
by the heading vector and the surface normal closest to the end point (which is inside,
otherwise the segment is would not intersect an obstacle).

Diffusion is simulated according to [22].
Tip: use the commandframe intervals to save only those contours you need

(e.g.the last one).

3.2.5 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programsoil are located in nodeenvironment, subnodesoil.

37

4 Miscellaneous environments

4.1 Environmental program implicit

This environmental program creates a contour surface defined as an implicit surface
around a set of skeleton points. The surface is polygonized and output to a file in the
GLS format.

4.1.1 Execution

Name of the executable:implicit

Command line parameters:
implicit [-e environmentfile] environmentargumentfile

Commands in environment argument file

domain size: xrange yrange zrange specifies the range (in world coordi-
nates) of a regular grid used to store objects for the intersection test.
The numbers can be delimited also by ’,’, ’;’, or ’�’.

position: xpos ypos zpos specifies the position of the lower front left corner
of the grid. The numbers can be delimited also by ’,’, ’;’, or ’�’.

3D primitives: xsize� ysize� zsize filename specifies the size of the
grid in voxels and a filename for the output of the contour in the GLS
format (see Section 3.2).

3D output: polygons=triangles the contour is output either as a collection
of triangles approximating the surface or polygons representing voxel
faces close to the surface. The default ispolygons.

output normals: on=off in case of triangle output, the normals at each ver-
tex may be included for Gouraud shading. The default isoff .

concentration contour value: val alpha The parameterval defines
the value of the implicit field defining the contour surface. The pa-
rameteralpha specifies the alpha value of the default contour material
(woody looking):

ambient 0.1 0.1 0.1 alpha
diffuse 0.1 0.6 0 alpha
specular 0.5 0.5 0.5 alpha
emissive 0 0 0 alpha
spec exponent 25

38

contour material: 17 values specifies the contour material (17 values in
the order shown in the example above).

frame intervals: fnj n1 � n2j n3 � n4 step s1g to save time consum-
ing output of a contour after each step, specific frames can be selected.
The step number is obtained fromcpfg.

verbose: on=off switches on or off verbose mode (the default isoff).

4.1.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1 parameter adds an object to the grid according to the module.

Parameters sent to the environment:

1 radius of influence of the point.

Parameters set by the environment:

1 the environment leaves the original value intact.

4.1.3 Algorithm

Program updates the grid of implicit field values after each point is processed by going
through all voxels in the point’s area of influence and modifying the field values in the
centre points of all these voxel. When required the contour surface of a specific value
is saved in a GLS format (either as triangles or polygons — see above).

Tips:

1. Instead of gradually increasing the radius of influence of a point, it is much more
effective to set the resulting radius at the beginning. It saves time of updating the
area of influence around such a point.

2. Use frame interval to save only those contours you need (e.g the last one).

4.1.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programimplicit are located in nodeenvironment, subnodeimplicit.

39

4.2 Environmental program multiple

This program distributes incoming communication modules to several environmental
programs specified in the specification file. The first parameter of each communication
module defines which to environmental program the module and associated data will
be transferred.

4.2.1 Execution

Name of the executable:multiple

Command line parameters:
multiple [-e environmentfile] environmentargumentfile

Commands in environment argument file

field communication file: file:e this command specifies the commu-
nication specification file (file:e) that defines the communication link
to an environmental program (the executable is defined in this file).
Several commandsfield communication file: can be included.
Note that their order in the environment argument file is important be-
cause the connections are indexed according to the order of these com-
mands.

verbose: on=off switches on or off verbose mode (the default isoff).

4.2.2 Communication

Turtle parameters sent to the field:Make sure that you include all parameters needed
by the environmental programs connected to the programmultiple.

Communication symbol

with at least one parameter Parameters sent to the environment:

1 index of the environmental program (according to the order of
commandsfield communication file in the environ-
ment argument file);

2- all subsequent parameters are shifted by one to the right (the
second parameter becomes the first,etc.) and send to the par-
ticular environment.

Parameters set by the environment:

1 unchanged (the index of the environmental program);

40

2- these parameters are set to the values of the parameters of
the environmental module received from the given environment
(shifted to the left — the first parameter becomes the second,
etc.).

4.2.3 Algorithm

After the execution the program reads in the environment argument file and estab-
lishes connections to all given environmental programs. Afterwards, it distributes all
environmental modules and any additional data associated with them to environmental
programs. The first parameter of each environmental module specifies the index of
the environmental program to which the module (without the first parameter) and all
associated data are sent.

When a response is received from a given environment, it is send back to the plant
simulatorcpfg(after the first parameter is added back).

4.2.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programmultiple are located in nodeenvironment, subnodemultiple.

41

4.3 Environmental program terrain

This program determines the altitude and optionally the normal and a water content at
a given point (specified byx andz coordinate). The terrain specification is read from
a file using a routine developed by Matt Pharr (http : ==graphics:stanford:edu= �
mmp=eco).

4.3.1 Execution

Name of the executable:terrain

Command line parameters:
terrain [-e environmentfile] environmentargumentfile

Commands in environment argument file

terrain file: filename specifies the name of the terrain file. All currently
used terrains are in=home=jungle=mech=vlab=terrains.

verbose: on=off switches on or off verbose mode (the default isoff).

4.3.2 Communication

Turtle parameters sent to the field:position.

Communication symbol

with 1-5 parameters All parameters sent to the environment are ignored.

Parameters set by the environment:

1 the latitude (y coordinate) at the point;

2-4 if present, the normal at the point;

5 if present, the water content at the point.

4.3.3 Algorithm

At its initialization, the program reads in the terrain specification from a given file. For
each incoming communication module (representing a query), the program calls a rou-
tine provided by Matt Pharr (downloadable fromhttp : ==graphics:stanford:edu=mmp=eco=)
and returns the latitude, and possibly also the normal and water content at the point.

Note that this environment is the only one which uses the communication library
functionMainLoop, because the answer to each query can be processed immediately,
independently of other queries. The source is in

=usr=u=vlab=src=ENV IRO=FIELDS=terrain:

42

4.3.4 Sample objects

Start hbrowser in /home/jungle/mech/vlab. The sample objects using the environmental
programterrain are located in nodeenvironment, subnodeterrain.

43

5 Undocumented environmental programs

This section lists environmental programs which are not documented in this manual.

� density — a special purpose program used for a model of algae-like branching
structures based on a paper by Cohen [8] (the model is presented in [25]). The
program determines density in a given point as a sum of reciprocals of distances
from end points of branches.

� density3d — used to reduce the density of branches for the plant climbing
on a chestnut. The program uses a simple grid or an octree to count the number
of leaves and/or apices appearing at a given location (voxel) and if a new apex
grows into too dense area, its development is terminated.

� dla — used to simulate the diffusion of substances around a growing branching
structure. The model is based on paper by Vaario [42] and it is described in detail
in [25].

� dla.old — an older version of the programdla .

� genetic1 — a special purpose program used to compute an effective leaf area
for a model of branch tiers based on a paper by Fisher and Honda [11].

� graphics test — used to illustrate the transfer of geometry betweencpfg
and environmental programs.

� greene — a special purpose program used for a model of trees generated by
growing strand around a predefined skeleton. When growing the strand is tightly
following the skeleton or an existing strands. Based on papers by Greene [17,
18].

� molecule — used to compute forces acting on a single atom in a molecule
enabling the molecule to fold itself to an energy-minimized configuration.

� ornament — an extension of programulam testing for a collision between
end point of branches. In addition, the programornament can input an image
file and the growth is then allowed only in areas with black pixels.

� parci — a simple environmental program that processes the information com-
ing from cpfg and runs programparcinopy . The programparcinopy
was developed by Michael Chelle and it determines the amount of light reaching
plant organs (considering also light reflected from and transmitted though sur-
faces,e.g. plant leaves). Since the programparcinopy can be executed only
on suns, the simulation is distributed,i.e.cpfg runs on an SGI andparcinopy
on a sun (see the sample models inhofs=environment=parci=:::).

� radia — an attempt to interfacecpfg with a radiosity program calledradiance .
The program was not suitable for our purposes and we do not have it any more.

44

� skeleton — contains the function calls necessary for the communication. It
is very useful as a starting point for creating new environmental programs.

Examples of all programs mentioned above (except theskeleton) can be found
in children of the nodeenvironment (you have to start thehbrowser in =home=jungle=mech=vlab).

The source code of all programs listed in this manual can be found in=home=jungle=mech=src=ENV IRO=fields
or =usr=u=vlab=src=src=ENV IRO=FIELDS.

45

References

[1] A RVO, J.,AND KIRK, D. Modeling plants with environment-sensitive automata.
Proceedings of Ausgraph ’88(1988), 27–33.

[2] A RVO, J., AND KIRK, D. Particle transport and image synthesis.Computer
Graphics 24, 4 (1990), 63–66.

[3] CHELLE, M. Développement d’un modèle de radiosit́e mixte pour simuler la
distribution du rayonnement dans les couverts véǵetaux. PhD thesis, Universit´e
de Rennes I, 1997.

[4] CHELLE, M., MĚCH, R., AND PRUSINKIEWICZ, P. Comparison or two differ-
ent radiative approaches, Monte Carlo ray tracing and radiosity, to compute the
distribution of light in canopies. Manuscript, May 1997.

[5] CHIBA , N., OHKAWA , S., MURAOKA, K., AND MIURA, M. Visual simulation
of botanical trees based on virtual heliotropism and dormancy break.The Journal
of Visualization and Computer Animation 5(1994), 3–15.

[6] CIE Technical Committee 4.2: Standardization of Luminance Distribution on
Clear Skies, 1973. Comission International de l’Eclairaze, Paris.

[7] CLAUSNITZER, V., AND HOPMANS, J. W. Simultaneous modeling of transient
three-dimensional root growth and soild water flow.Plant and Soil 164(1994),
299–314.

[8] COHEN, D. Computer simulation of biological pattern generation processes.Na-
ture 216(October 1967), 246–248.

[9] COHEN, M. F., CHEN, S. E., WALLACE , J. R., AND GREENBERG, J. R. A
progressive refinement approach to fast radiosity image generation.Computer
Graphics (SIGGRAPH ’88 Conference Proceedings) 22(1988), 75–84.

[10] COHEN, M. F., AND GREENBERG, D. P. The hemi-cube: a radiosity solution
for complex environments.Computer Graphics 19, 3 (1985), 31–40.

[11] FISHER, J. B., AND HONDA, H. Tree branch angle: Maximizing effective leaf
area.Science 199(1977), 888–890.

[12] FOLEY, J. D.,VAN DAM , A., FEINER, S., AND HUGHES, J. Computer graph-
ics: Principles and practice. Addison-Wesley, Reading, 1990.

[13] GIERER, A. Directional cues for growing axons forming the retinotectal projec-
tion. Development 101(1987), 479–489.

[14] GLASSNER, A. S. Principles of Digital Image Synthesis, vol. 2. Morgan Kauf-
mann Publishers, San Francisco, California, 1995.

46

[15] GORAL, C. M., TORRANCE, K. E., AND GREENBERG, D. P. Modeling the
interaction of light between diffuse surfaces.Computer Graphics 18, 3 (1984),
213–222.

[16] GOVAERTS, Y. M. A model of light scattering in three-dimensional plant
canopies: A Monte Carlo ray tracing approach. PhD thesis, Universit´e
Catholique de Louvain, 1995.

[17] GREENE, N. Voxel space automata: modeling with stochastic growth processes
in voxel space.Computer Graphics 23, 4 (1989), 175–184.

[18] GREENE, N. Detailing tree skeletons with voxel automata.SIGGRAPH’91
course notes on photorealistic volume modeling and rendering techniques(1991),
7:1–7:15.

[19] HALL , R. A., AND GREENBERG, D. P. A testbed for realistic image synthesis.
IEEE Computer Graphics and Applications 8, 3 (1983).

[20] HANRAHAN , P. M.,AND SALZMAN , D. A rapid hierarchical radiosity algorithm
for unoccluded environments.Eurographics Workshop on Photosimulation, Ral-
ism and Physics in Computer Graphics(June 1990).

[21] HANRAHAN , P. M., SALZMAN , D., AND AUPERLE, L. A rapid hierarchical
radiosity algorithm.Computer Graphics (SIGGRAPH ’91 Conference Proceed-
ings) 25(1991), 197–206.

[22] KAANDORP, J. A. Fractal Modelling. Growth and Form in Biology. Sringer-
Verlag, Berlin, 1994.

[23] KAJIYA , J. T. The rendering equation.Computer Graphics (SIGGRAPH ’86
Conference Proceedings) 20, 4 (August 1986), 143–150.

[24] KALOS, M. H., AND WHITLOCK, P. A. Monte Carlo Methods. John Wiley &
Sons, New York, 1986.

[25] MĚCH, R. Modeling and Simulation of the Interaction of Plants with the En-
vironment using L-systems and their Extensions. PhD thesis, The University of
Calgary, Calgary, Canada, November 1997.

[26] MOON, P.,AND SPENCER, D. E. Illumination from a non-uniform sky.Illumi-
nation Engineering 37(1942), 707–726.

[27] MÜLLER, S., KRESSE, W., GATENBY, N., AND SCHÖFFEL, F. A radiosity ap-
proach for the simulation of daylight. InProceedings of Conference on Rendering
Techniques(1995), pp. 137–146.

47

[28] MYNENI, R. B., MARSHAK, A. K., KNYAZIKHIN , Y., AND ASRAR, G. Dis-
crete ordinates method for photon transport in leaf canopies. InPhoton-Vegetation
Interactions - Applications in Optical Remote Sensing and Plant Ecology, R. My-
neni and J. Ross, Eds. Springer-Verlag, Berlin, 1991, ch. 3, pp. 45–109.

[29] NISHITA, T., AND NAKAMAE , E. Continuous tone representation of three
dimensional objects taking account of shadows and interreflection.Computer
Graphics 19, 3 (1985), 61–67.

[30] NISHITA, T., AND NAKAMAE , E. Continuous tone representation of three di-
mensional objects illuminated by sky light.Computer Graphics 20, 4 (1986),
125–132.

[31] NOVOPLANSKY, A., COHEN, D., AND SACHS, T. How portulaca seedlings
avoid their neighbours.Oecologia 82(1990), 490–493.

[32] PATTANAIK , S. N. Computational Methods for Global Illumination and Visual-
isation of Complex 3D Environments. PhD thesis, Birla Institute of Technology
and Science, INDIA, 1993.

[33] PEREZ, R., SEALS, R., AND MICHALSKY, J. All-weather model for sky lumi-
nance distribution—preliminary configuration and validation.Solar Energy 50, 3
(1993), 235–245.

[34] SAMET, H. Applications of Spatial Data structures. Addison-Wesley, 1990.

[35] SHIRLEY, P. Physically Based Lighting Calculations for Computer Graphics.
PhD thesis, University of Illinois at Urbana-Champaign, 1990.

[36] SHIRLEY, P. A ray tracing method for illumination calculation in diffuse-specular
scenes.Proceedings of Graphics Interface ’90(1990), 205–212.

[37] SHREIDER, Y. A. The Monte Carlo Method. Pergamon Press, New York, 1966.

[38] SILLION , F. X., AND PUECH, C. Radiosity and global illumination. Morgan
Kaufmann Publishers, San Francisco, California, 1994.

[39] SOBOL’, I. M. The Monte Carlo method. The University of Chicago Press, 1974.

[40] TAKAGI , A., TAKAOKA , H., OSHIMA, T., AND OGATA, Y. Accurate rendering
technique based on colorimetric conception.Computer Graphics 24, 4 (1990),
263–272.

[41] TAKENAKA , A. A simulation model of tree architecture development based
on growth response to local light environment.Journal of Plant Research 107
(1994), 321–330.

48

[42] VAARIO, J., OGATA, N., AND SHIMOHARA , K. Synthesis of environment di-
rected and genetic growth. To appear in the proceedings of the Artificial Life V
conference, held in Nara, Japan, May 16–18, 1996. Included inALIFE V oral
presentations(preliminary version of the proceedings), pp. 207–214.

[43] VERHOEF, W. Light scattering by leaf layers with application to reflectance
canopy modeling: the sail model.Remote Sensing of Environment 16(1984),
125–141.

[44] VERHOEF, W. Earth observation modeling based on layer scattering matrices.
Remote Sensing of Environment 17(1985), 164–178.

49

A Program for computing light distribution

This appendix presents a method for computing the amount of light reaching plant
organs. The environmental program described below computes both the direct and in-
direct light reflected or transmitted by other surfaces. The program is based on the
Monte Carlo algorithm for estimating a rendering equation [23] whose solution deter-
mines the amount of light, both direct and indirect, reaching each object in the scene.

A.1 Background

The rendering equation defined by Kajiya [23] expresses the light intensityI(x; x0)
passing from pointx0 of a surface to an arbitrary pointx in space. The rendering
equation is (from [23]):

I(x; x0) = g(x; x0)

�
�(x; x0) +

Z
S

�(x; x0; x00)I(x0; x00)dx00
�
: (3)

The equation simply balances energy exchanges between surfaces. The intensityI(x; x0)
is equal to the sum (integral) of the light intensity�(x; x0) emitted from a surface at
pointx0 towardsx and the total light intensityI(x0; x00) coming from all pointsx00 on
all surfaces (S) to the pointx0 and scattered by the surface at pointx0 (as defined by the
scattering coefficient�(x; x0; x00)). The factorg(x; x0) is a “geometry” term expressing
the visibility of pointx from x0.

There are two commonly used techniques for solving the rendering equation. In the
radiositymethod [3, 10, 15, 29], surfaces are subdivided into smaller patches, which
are assumed to diffusely emit and reflect light of a constant intensity throughout their
surface. The rendering equation then expresses the light flux reaching a patch as a sum
of the light emitted from all other patches, while considering occlusions. Solving the
system ofN equations forN patches yields light intensities reaching each patch.

The original radiosity method is very time consuming. First, it is necessary to com-
pute a visibility factor (aform factor) for each pair of patches. This factor expresses
what portion of one patch is visible from the other patch. An efficient method de-
termines form factors for a patch by projecting all other patches onto a hemisphere
or hemicube defined around the patch. It can be faster to projectN � 1 patches
ontoN spheres or5N hemicube faces than to compute directly the form factors for
N(N � 1)=2 pairs of objects. Second, it is very time consuming to solve the system
of N equations for very large values ofN , even if the system is solved by iteration.
To this end, the radiosity method has been extended by introducing a technique called
progressive refinement[9], in which the form factors are determined only when they
are needed for computing the energy passing from a surface to another surface, and sur-
faces are processed in order of importance with respect to the overall balance of energy.
To reduce the total number of computed form factors, a hierarchical algorithm attempts
to establish energy transfers between mesh elements of varying size, thus reducing the
subdivision of surfaces [20, 21].

50

Many techniques that make the radiosity method more efficient are motivated by
the use of the method for rendering of realistical looking scenes. In the scope of this
thesis, however, we intend to find the solution of the rendering equation for the purpose
of calculating the distribution of radiative energy in a canopy. Specifically, we are
interested in light intensities reaching selected surfaces (e.g. leaves) as opposed to
generating a view of the scene from a given point. Thus it is possible to take advantage
of the special properties of the considered scenes and to improve the efficiency of the
radiosity method by making a few assumptions.

A recent work of Chelle addresses this issue by extending the radiosity method
specifically for calculating the distribution of light in a canopy [3]. In his method, the
number of unknowns in the rendering equations can be reduced in the case of more or
less uniform canopies,e.g.of a corn field. First, the canopy is divided into horizontal
layers of constant light characteristics and aturbid mediummodel [43, 44] is applied to
efficiently compute the light fluxes between the layers. In the second step, the radiosity
equation is solved for primitives inside a sphere of a certain radius, while the light
coming from the outside of the sphere is determined from the fluxes at a given layer
(computed using the turbid medium model). This approach significantly improves the
performance of the radiosity algorithm while only slightly reducing the accuracy of the
results [3].

The other common algorithm solves the rendering equation (3) usingMonte Carlo
methods — techniques relying on random processes [24, 35, 37, 39]. In the context of
the rendering equation, they can be applied in two ways [38]:

� by evaluating the integral in the rendering equation using stochastic approxima-
tion techniques in a purely mathematic way with no special adjustment for the
purpose of calculating the light distribution in the scene.

� by following the path of light, originating from a light source. The light is traced
using the approach of a “random walk”,i.e.every time the light reaches a surface,
its fate is decided randomly (see below for more details). This method, called
path tracing, was first introduced by Kajiya [23] (see also [14, 35]). Path tracing
has been effectively applied to calculating the distribution of light in a canopy [3,
16].

In the path tracing algorithm, light particles (or a group of particles — “photon bun-
dles” [38]) are emitted from light sources in different directions, chosen at random. The
paths of the particles are traced individually as rays. If a ray hits an object, the light
associated with it (expressed as a radiant power [38]) can be completely absorbed,
reflected from or transmitted through the object. The selection between these three
options is made randomly according to the surface parameters (specifying what por-
tion of the incoming light is absorbed, reflected, or transmitted). The precision of the
algorithm depends on the number of traced rays. For a desired variance of error, it is
possible to compute the minimum number of required rays [14, Section 18.8]). After

51

all rays have been traced, the amount of light absorbed by each object is calculated as
the sum of radiant powers of all rays that were terminated at this object.

A comparison of the implementation of Chelle’s extended radiosity algorithm and
a Monte Carlo algorithm, made by Chelle, Prusinkiewicz, and myself [4], indicates
that these approaches generate similar results in a similar time. Consequently, I have
chosen the Monte Carlo algorithm as a base for the environmental program described
below.

A.2 Operation of the model of the environment

The environmental programMonteCarlois based on my implementation of the Monte
Carlo algorithm, operating under the following assumptions. The program deals only
with polygons, because it is used mainly for computing the light distribution in canopies
and it is possible to represent all parts of a plant, such as leaves or stems, objects around
the plant, or the ground as a set of polygons. In addition, the leaves are assumed to be
thin enough that the refraction of light transmitted through the leaves can be ignored.

A.2.1 Preprocessing

In the preprocessing phase of the algorithm, the scene polygons are stored in a regular
grid and a bounding sphere is computed around all polygons. The use of a regular grid
is a standard technique that accelerates ray-tracing by reducing the number of intersec-
tion tests between a ray and polygons in the scene [12, 34]. The bounding sphere is
used to determine the boundaries for rays entering the scene (see Section A.2.2).

The following heuristic computes the sphere incrementally, as verticesVi;j of in-
coming polygons, indexedj = 1; :::, are processed. The first value of the sphere center
C1 is set to the first vertexV1;1 of the first polygon and radiusr1 is set to 0. If the
(k + 1)-st processed vertexVi;j is outside the sphere(Ck; rk), the centerCk is moved
towardsVi;j by half the difference between the distancejCk � Vi;j j and radiusrk:

Ck+1 = Ck +
Vi;j � Ck

jCk � Vi;j j
�
jCk � Vi;j j � rk

2
:

The radiusrk is then increased by the same difference:

rk+1 = rk +
jCk � Vi;j j � rk

2
:

Thus the new sphere includes all points in the sphere from the previous iteration plus
the vertexVi;j .

It is important to have a tight bounding sphere, because the number of rays traced
depends on the size of the sphere (Section A.2.2). This algorithm does not compute
the smallest bounding sphere, but in the case of a set of leaves distributed in a more
or less spherical crown, the computed sphere is very close to the minimal one. Since
the algorithm is not limited to computing the distribution of light in a tree canopy, the
resulting bounding sphere is compared with the bounding sphere of the bounding box
enclosing all objects and the sphere with the smaller radius is chosen.

52

A.2.2 Generating initial rays

The computation of the light distribution starts with generating initial rays representing
photon bundles of a certain radiant power� emitted from the light sources [36]. The
rays are chosen randomly so they sample the specified light sources. For each initial
ray, it is necessary to choose its direction and point of departure.

In the case of plant models, the light source is usually the sky. The sky can be ap-
proximated by defining a set of directional light sources or represented by a continuous
function, specifying the radiant power coming from an arbitrary direction (e.g. a CIE
standard overcast sky luminance function [6]). In both cases, the direction of initial
rays is generated randomly so that the ray distribution reflects different intensities of
light coming from different directions,i.e.more rays are coming from the direction of
bright light sources and the initial radiant power of all rays is 1.

If a list ofm directionsvi with intensitiesIi, i = 1; ::m, is specified, the direction of
an initial ray is chosen randomly among directionsvi with probabilityIi=(

Pm
j=1 Ij)

for directionvi. The numberN of initial rays depends on the size of the bounding
sphere enclosing all objects in the scene. Ifr is the radius of the bounding sphere,d
is the ray density (specified by the user and defining the number of rays of unit radiant
power generated per unit area), andIi are intensities of light coming fromm specified
directions, the total number of initial rays with radiant power 1 is:

N = �r2d

mX
j=0

Ij : (4)

If the sky is represented by the continuous luminance functionL(�; ') [6], the
direction of an initial ray is specified as(�; '), where� is the angle with respect to
zenith and' is the angle with respect to north (the zenith is equal toy axis, and north
is in the direction of the positivez axis). The direction is generated according to a
probability density function based on the luminance functionL so that more rays are
generated in directions with higher intensity [38].

To determine the point of departure of a ray with the given direction (both in the
case of a continuous function orm directions), a random pointP on a disk with center
C and radiusr (of the bounding sphere) perpendicular to the ray direction is selected.
The pointP (moved along the ray direction so that the ray starts outside the scene)
with the generated direction then specifies the initial ray.

A.2.3 Tracing of rays

Each initial ray with the radiant power 1 is traced in the grid using standard ray-tracing
techniques [12]. If the intersection with an object is detected, the local light model
described below is applied. First, it is decided whether the ray is absorbed, reflected,
or transmitted. Then, if the ray is transmitted or reflected, the direction of the new ray
is determined according to the directional distribution of reflected or transmitted light.

If a ray with radiant power� hits a surface at pointP , a portion of the power is
absorbed, a portion is reflected, and a portion is transmitted. If the value of the surface

53

ϕ

θ

n

R

Figure 1: Definition of angles� and' with respect to the “ideal” reflected ray~R

absorbance is equal toa, the reflectance is equal tor, and the transmittance is equal to
t (a + r + t = 1), the radiant power absorbed by the surface is equal to�a, reflected
�t, and transmitted�t. Generally, the values ofa, r, andt depend on the wavelength
of the incoming photons and the incidence angle (the angle of the ray with the surface
tangent at the intersection point).

Usually, only one possibility is chosen, and the incoming ray is either absorbed,
reflected, or transmitted, based on probabilitiesa, r, andt [38]. In the programMon-
teCarlo, a part of the ray’s radiant power� is always absorbed by the surface (the
absorbed power�a is added to the value of a parameter associated with the surface).
The remaining power�(r + t) is either reflected or transmitted. In this case, the re-
flected or transmitted ray is chosen randomly with probabilityr=(r+ t) andt=(r+ t),
respectively.

The direction of the new ray is chosen as follows. Generally, the radiant power
reaching the surface at a certain point is not reflected equally in all directions. The
directional distribution of the reflected light is expressed bybidirectional reflectance
distribution functions(BRDFs) [14, 38]. Similarly, aBTDF describes the directional
distribution of transmitted light. There are different functions for different incidence
angles.

The programMonteCarloapproximates the BRDFs by the Blinn-Phong reflectance
model [35] and assumes that the values ofa, r, andt do not depend on the incidence
angle. If the scene contains many plant organs and the ray represents only a single
wavelength (not an average radiant power of all wavelengths), it is a common practice
to assume constant values of these parameters [28].

In the Blinn-Phong model, the direction of the reflected ray is expressed by angles
� and', where� (a zenith angle) is an angle between the ray and the “ideal” reflected
ray ~R and angle' is an azimuth angle with respect to ray~R (Figure 1). If the direction
of all reflected rays is chosen randomly using a uniform distribution, the radiant power

54

of a reflected ray for all incidence angles is:

�(�; ') = �r
n+ 2

8�
cosn

�

2
; (5)

where�r is the total reflected radiant power (in our case,(r+ t)�), n is the reflectance
scattering exponent, and angles� and' range from0 to �3 and from0 to 2�, respec-
tively [35]. High values ofn represent smooth surfaces for which most of the light
is reflected close to the ray~R. The Blinn-Phong model is used instead of the simple
Phong model, because in the Phong model, the angle� ranges only from0 to �=2,
which does not cover all possible ray directions in case the “ideal” (reference) reflected
ray ~R is not equal to the surface normal~n [35].

Following Hall and Greenberg [19], the same formula (5) is used to determine the
radiant power of rays transmitted in a given direction around the reference transmitted
ray (equivalent to ray~R in case of reflection). In our case, the polygons represent
either the boundary of opaque objects or thin surfaces, such as leaves, in which case it
is possible to ignore refraction and the reference transmitted ray is equal to the original
ray.

If the direction of a reflected or transmitted ray was chosen at random with the
uniform distribution, there would be a lot of rays with a low value of radiant power
not contributing much to the light absorbed by an object a ray may hit. That is why
the direction of the reflected or transmitted ray is generated randomly according to the
radiant power distribution function (equation (5)) and the ray radiant power stays equal
to �r = �(r + t). In case of the Blinn-Phong model, the ray direction is computed
using formula [35]:

(�; ') = (2 arccos((1� r1)
1

n+2); 2�r2);

wherer1 andr2 are uniformly distributed random numbers in the intervalh0; 1).
Afterwards, the reflected or transmitted ray is generated and the ray is traced until

another hit occurs.

A.2.4 Terminating the ray

There are two mechanisms that can be applied to determine the termination of a ray. In
the first approach, tracing of a ray continues until the ray depth (equal to the number
of hits on the ray’s path) reaches the maximum user-specified value. The optional
method for the terminating a ray is calledRussian roulette[14, 38]. In this method,
each ray has associated with it a probability parameter. This parameter specifies the
probability with which the particular path was chosen. Initially this probability is one.
After each hit, it is multiplied by parameters specifying the probability of generating
reflected or transmitted ray (r=(r + t) or t=(r + t)). Before generating a new ray,
the ray’s radiant power� multiplied by the probability parameterprob is compared
with a threshold value�t. If � � prob � �t the ray continues. Otherwise a random

3Rays going into the surface are ignored.

55

number between 0 and 1 is generated and if it is below a given probability thresholdp,
the ray is terminated. If the ray continues, its radiant power� is divided by(1 � p).
This amounts to an increase of the radiant power to account for rays that have been
terminated [2, 32]. In our simulations, we use values of�t = 0:1 andp = 0:7.

A.2.5 Interfacing with the plant simulator

Generally, the environmental program receives all polygons representing the plant’s
leaves and possibly objects around the plant. Then the program computes the radiant
powers reaching each surface. After all rays have been traced, parameters storing the
radiant power absorbed by an object are sent to the plant model. If the object consists
of more than one polygon the contribution of all polygons is summed.

Input of the plant geometry
In each simulation step, the environmental process receives information about all

communication modules and the selected plant modules. The plant modules following
communication modules represent plant organs.

In the programMonteCarlo, the geometric information about a plant organ is trans-
ferred in two ways. The difference in the two approaches is in the way the module
following the communication module?E is represented.

1. For a moduleP , the environmental process constructs a parallelogram of a spec-
ified orientation (based on turtle vectors). The lengths of diagonals of the paral-
lelogram are controlled by the parameters of the moduleP .

2. For any other module, the environment expects that the plant simulator sends a
set of polygons representing the module.

Specifically, if the communication module?E is followed by moduleP (a; b; :::)
with two or more parameters, the moduleP defines a polygon constructed in the fol-
lowing way. The polygon is a parallelogram with one diagonal in the direction of the
turtle heading vector~H and length2a, and the second diagonal in the direction of the
left vector~L and lengthb. The turtle position~P defines one vertex of the polygon.
Thus, the message sent to the environment has to also include the turtle position~P , the
heading vector~H , and the left vector~L. The third and fourth parameter of the module
P , if present, specify the index of the material for the front and back sides of the poly-
gon. The material is defined in the specification file of the environmental program (see
Section A.2.5).

The definition of the polygon shape is fixed and can be changed only by varying
values ofa andb. Thus in the second approach, the environment can receive a set of
polygons representing the module following?E. Thus for any module other thanP ,
the environment expects the geometry in the form of polygons sent by the plant model.
To define a complex organ, homomorphism productions can specify the geometry of
the module, and all the polygons representing the module are transferred to the envi-
ronment, which considers them as part of a single object. The material indexes are then
specified by the first two parameters of the module following the module?E.

56

Materials
Parameters of surface materials are defined in a specification file processed by the

environment at the beginning of the simulation. Each material is defined by 4 parame-
ters:

1. reflectance- controls the percentage of the incoming radiant power that is re-
flected from the surface. A value between 0 (a black body) to 1 (a perfect reflec-
tor) can be used. The value does not depend on the incidence angle of the light
direction reaching the surface.

2. reflectance scattering exponent- specifies the roughness of a surface. Value
of 0 represents a perfectly diffuse surface, for which the radiant power of the
reflected ray does not depend on its direction — the higher the value the smoother
the surface.

3. transmittance - controls the percentage of the radiant power being transmitted
through the surface.

4. transmittance scattering exponent- similarly as the reflectance exponent, the
transmittance scattering exponent specifies the degree of scattering of the trans-
mitted light. For a value of 0, the light is scattered equally in all directions, while
for higher values, more rays are concentrated around the “ideal” direction of the
transmitted ray.

The sum of reflectance and transmittance must be in the intervalh0; 1i. Since the
surfaces are thin, the index of refraction does not have to be specified.

As a default, surfaces use the first material defined in the specification file. This
default material can be changed by including the index of a desired material (corre-
sponding to the order of its definition in the specification file) in the module following
the communication module. It is possible to specify different materials for the two
sides of a surface (by including two material indexes in the module).

A.3 Computing the ratio of different wavelengths

In this section, the algorithm presented above is extended by making it possible to con-
sider different surface parameters for different wavelengths and to efficiently compute
the ratio of light fluxes for two selected wavelengths reaching a surface.

A.3.1 Background

In the case of the Monte Carlo algorithm, it is a common approach to specify a set
of surface parameters for each considered wavelength and then to run the algorithm
several times, separately for each wavelength [38].

If we were interested only in the flux of red lightR and the flux (radiant power) of
the far red lightFR reaching a surface, this method would be sufficient, because it is
possible to keep the variance of the results below a given threshold by tracing a certain

57

amount of initial rays (by modifying the ray densityd). Specifically, it can be shown
that to reduce the variance of the energy absorbed by the objects below a thresholdV0,
it is sufficient to traceC=V0 initial rays, whereC is a constant [14, Section 18.8].

The problem in our case is that even if values ofR andFR for a single object have
a variance belowV0, their ratio could have a much higher variance. Consequently,
many more initial rays are required to reduce the variance of the ratio.

The following sections present a modification of the Monte Carlo algorithm, which
makes it possible to compute the ratio more efficiently than running the method sepa-
rately for each wavelength.

A.3.2 Generating initial rays

To reduce the number of initial rays, and consequently the running time of the Monte
Carlo algorithm, I have modified the algorithm by tracing a single ray for all wave-
lengths at once4. Each ray carries compound information about different wavelengths
in the form of the radiant power for each wavelength. The local light model is then
modified to be able to consider different probabilities of generating a reflected or trans-
mitted ray and different scattering exponents for each wavelength in selecting a single
reflected or transmitted ray.

If there ares wavelength samples considered, each ray has associated radiant pow-
ers�i, i = 1; ::; s, for each wavelength. Initially, the radiant powers�i are set to the
source intensitiesIi for given wavelengths�i. The number of initial rays is then com-
puted using the formula 4, with all intensitiesIj set to 1,i.e.there are�r2d initial rays
for each light source.

A.3.3 Modifications of the local light model

Similarly to the original method, surfaces are characterized by four parameters specify-
ing reflectanceri, reflectance exponentnri , transmittanceti, and transmittance expo-
nentnti (for each wavelength separately). Each surface contains a set ofs parameters
Ai, i = 1; ::; s, that store the amount of light absorbed by the surface for each wave-
length.

When a ray hits a surface, each radiant power�i is reduced to account for the
absorbed light. Thus parametersAi are increased by�i(1� ri � ti) (as in the original
method, see Section A.2.3). The remaining radiant powers:

�ai = �i(ri + ti)

are used as the radiant powers of a reflected or transmitted ray.
In the Monte Carlo method described in Section A.2, the selection between a re-

flected and transmitted ray was done based on the surface reflectancer and transmit-
tancet. In the modified method, the values of these parameters may significantly vary
for different wavelengths and it is necessary to balance the probabilities of choosing

4To the best of our knowledge this method has not been published before.

58

the reflected or transmitted ray for all wavelengths. Instead of simply averaging the
values ofri=(ri+ ti) andti=(ri+ ti), each value is multiplied by the actual ray radiant
power�ai to increase the influence of wavelengths with higher radiant power.

The probability of generating a reflected or transmitted ray~R is computed from the
sums of probabilities for each wavelength. The probability of generating a reflected
ray is:

pr =

Pn
i=1 ri=(ri + ti)�aiPn

i=1�ai

=

Pn
i=1 ri�iPn
i=1�ai

:

Similarly, the probability of generating a transmitted ray is:

pt =

Pn
i=1 ti=(ri + ti)�aiPn

i=1�ai

=

Pn
i=1 ti�iPn
i=1 �ai

:

In the local model presented in Section A.2.3, the radiant power of a reflected or
transmitted ray was equal to the ray radiant power before the hit (�), because the
reflected or transmitted ray was chosen in such a way that on average, the reflected
radiant power is equal to�r and the transmitted radiant power is�t. Specifically, out
of N rays with the same power� reaching the surface,Nr rays are reflected andNt
are transmitted (ifN is sufficiently large). Thus out of the total incoming radiant power
N�, the powerNr� is reflected andNt� is transmitted.

Since the ray is now chosen based on the overall reflected or transmitted radiant
power using valuespr andpt, out ofN incoming rays (with the same radiant powers
�i, i = 1; 2; :::; s), there areNpr reflected andNpt transmitted rays. To keep the
total amount of reflected radiant powers equal toN�iri, the radiant powers associated
with a reflected ray are multiplied by a factorri=pr. Thus radiant powers�Ri

of the
reflected ray are:

�Ri
= �i

ri
pr
:

Similarly radiant powers�Ti of the transmitted ray are:

�Ti = �i

ti

pt
:

For example, if a reflected ray is traced and a reflectance for some wavelength is 0, the
corresponding radiant power is also 0.

Once the reflected or transmitted ray is chosen according to probabilitiespr andpt,
it is necessary to determine the direction of the ray. In Section A.2, the direction of
both the reflected and transmitted ray is generated using the Phong-Blinn reflectance
model. Since generally, the scattering exponents may be different for each wavelength,
the program first choses one of the exponents using a similar approach as in the case
of reflectances and transmittances, and then adjusts the radiant power�i of each wave-
length according to the difference between the exponentni and chosen exponentn.

The direction (�; ') of the new ray is generated randomly according to the distri-
bution function (5). The exponentn is randomly chosen between exponentsnri for

59

reflected ornti for transmitted ray with probabilities

p(n = nri) =
IRiPn
i=1 IRi

;

and

p(n = nti) =
ITiPn
i=1 ITi

:

The direction of the new ray reflects the proper distribution of radiant powers only
for exponents equal ton. It is thus necessary to adjust the ray radiant powers for all
wavelengths for whichnri or nti is not equal to the selectedn.

Imagine thats different rays (for each wavelength) would be generated. The ray
direction is generated according to the radiant power distribution functionp:

p(ni; �; ') =
ni + 2

8�
cosni

�

2
: (6)

If �i is the total radiant power reflected from or transmitted through the surface (�Ri
or

�Ti) the radiant power leaving the surface in the direction(�; ') is equal to�ip(ni; �; '),
whereni is equal to eithernri ornti .

Thus if the direction is generated using the radiant power distribution function
p(n; �; ') instead ofp(ni; �; '), the radiant power�i associated with the ray is multi-
plied by a factor

p(ni; �; ')

p(n; �; ')
=
ni + 2

n+ 2
cosni�n

�

2
:

Consequently, all intensities of the reflected or transmitted ray appropriately reflect the
corresponding properties of the surface.

A.3.4 Tracing rays

The rays are traced the same way as in the original method (Section A.2), except that
the Russian roulette method of terminating rays is modified to account for several wave-
lengths. After each hit, the radiant powers multiplied by the probabilities of chosing a
given path (for each wavelength) are added and divided by the number of wavelengths.
The resulting value is compared with the threshold�t as in the original Russian roulette
method. The ray is terminated with probabilityp or all its radiant powers are increased
by factor1=(1� p).

As in the original method, after all initial rays have been traced, parameters accu-
mulating the light radiant power absorbed by an object are sent to the plant model.

A.3.5 Comparison with the standard method

To compare the method described in this section with the commonly used approach [38]
in which the rays are traced separately for each wavelength, the following experiment
has been designed (for a similar approach, see [3]).

60

An L-system model was used to generate a set ofN triangles, which are placed
and oriented at random in a cube of size10 � 10 � 10 units. The triangles are then
transferred to the environment, which performs a given number of simulationsS. Thus
instead of computing the values of theR=FR ratio just once, the program repeats the
processS times and outputs a mean value of the ratio and its standard deviation for each
triangle. To be able to compare the results for the two algorithms, the resulting standard
deviation for every triangle is divided by the corresponding mean to obtain a relative
standard deviation for the triangle (to account for differences in the mean values for
different triangles). The relative deviations of all triangles are averaged resulting in an
average relative standard deviation of the experimentrel ��FR=R. In addition, values
of rel ��R andrel ��FR, corresponding to the average relative standard deviations for
fluxes of red light or far red light reaching the triangles, are also computed. Table 1
summarizes the results of the simulations.

Simu- Triangles, Rays rel ��R,��FR; ��R=FR Timea (min)
lation Area separate/together separate/together separate/together

1 100, 0.25
21,500 0.18, 0.21;0.31 3:58

10,000 0.21, 0.20;0.12 1:49

2 100, 0.25
107,500 0.061, 0.080;0.10 19:35

50,000 0.071, 0.078;0.050 8:37

3 150, 1.0
21,500 0.12,0.11;0.17 6:12

10,000 0.14, 0.12;0.14 3:03

4 150, 1.0
107,500 0.042, 0.49;0.066 32:58

50,000 0.051, 0.053;0.059 14:54

5 200, 2.0
21,500 0.28, 0.18;0.37 11:45

10,000 0.38, 0.20;0.38 6:44

6 200, 2.0
107,500 0.12, 0.080;0.15 60:24

50,000 0.16, 0.088;0.16 33:03

a100 consecutive simulations on a 150MHz/32MB R5000.

Table 1: Comparing the precision of results and simulation times of the standard Monte
Carlo method with the new approach of tracing one ray for all wavelengths

In the first simulation, 100 triangles of the area of 0.25 square units are considered.
The four surface parameters (r, nr, t, nt) were equal to 0.1, 0, 0.0, and 10 for red light
and 0.35, 0, 0.55, and 10 for far red light. The ray density was set to 100 rays per
square unit of the light source. Consequently, 21,500 rays (10,000 for red and 11,500
for far red light) were traced using the standard approach and only 10,000 rays using
the new method. The simulations were run 100 times to obtain the variances of the
fluxes reaching each triangle. The corresponding running times were 3:58 minutes and
1:49 minutes for the original and new method, respectively. Although the running time

61

of the new method was less than half of the time for the standard method, the average
standard deviation of the new method (0.91) was almost three times lower that the one
of the standard method (2.83). Interestingly, the average relative standard deviations
of red and far red fluxes reaching the triangles are comparable for both methods (only
slightly higher for the red light), suggesting that even if less rays are traced using the
new method, the results for separate wavelengths are basically the same as for the
original method.

In the second simulation, the number of rays has been increased 5 times. The
corresponding results are in Table 1. The average variances are about three times lower
as compared to the simulation with less rays. The new method is about twice as fast
and twice as precise in computing the R/FR ratio than the original method.

The significant reduction of the average variance of the ratio may be caused by the
fact that triangles are small and they do not overlap each other too much. In that case,
the direct light reaching each triangle constitutes the main influence and the results are
biased, because the R/FR ratio of rays before the first hit is exact. If we want to obtain
a better comparison of the methods, we have to make the set of triangles denser.

Thus in the following two simulations, the previous two experiments were repeated,
with the number of triangles increased to 150 and their area set to 1. The results,
shown in Table 1, support the observation about the effect of the direct light, because
the difference inrel ��R=FR (for the two methods) is reduced. Nevertheless, the value
rel ��R=FR for the new method is still below the one produced by the original method
and the values of deviations for red and far red light are again comparable. Note that
the running time is again half the time of the original method.

In the last two simulations, the number of triangles was further increased to 200,
and their area to 2. As illustrated in Table 1, the difference inrel ��R=FR is further
reduced and the values ofrel ��R andrel ��FR for the new method are higher that the
ones for the old method, especially for red light where the difference is about 35%.
These results are caused by the fact that the size and the number of triangles is very
high considering the size of the cube in which they are placed (10� 10� 10) and most
triangles receive only reflected or transmitted light. In a real plant canopy, though,
the density of leaves would be lower (in the order of the density in the second set of
simulations, using 150 triangles).

As illustrated by the above experiments, the new algorithm performs much better as
compared to the common approach of tracing separate sets of rays for each wavelength.
The new method seems to be slightly more precise than the original method while
reducing the running time by half. In addition, the resulting values of red and far red
fluxes reaching the objects were comparable for both methods. Consequently, the new
method is very useful for computing the quality of light reaching the plant and can be
used effectively in the simulation of plants interacting with the light environment.

62

