
Intro to Computer Graphics:
Just enough OpenGL

Updated: September 13, 2019

Slides By: Philmo Gu

1



Graphics Processing Unit (GPU)

• GPU VS CPU
• CPU: Running instructions over a few cores with lots of cache memory

• GPU: Sharing instructions over many simple cores

• Can accelerate some software by 100x

Source: https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/

“GPUs are optimized for taking huge batches of data 
and performing the same operation over and over 
very quickly, unlike PC microprocessors, which tend to 
skip all over the place.” 
– Nathan Brookwood, Insight 64 principal analyst

2

https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/


Graphics API

• Graphics API is a specification that describes the behaviour of 
rasterization-based rendering system
• Implemented by hardware manufacturer

• Standard API allows applications to run on different kinds of graphical 
hardware

• Drivers translate OpenGL API commands into GPU commands
• Defect in graphics is often due to the hardware, not the library

• Examples: 
• OpenGL, Vulkan (low-level), CUDA (Nvidia, low-level), DirectX (Microsoft)

Source: https://developer.samsung.com/tech-insights/vulkan/what-is-a-graphics-api
Source: https://www.khronos.org/opengl/wiki/FAQ 3

https://developer.samsung.com/tech-insights/vulkan/what-is-a-graphics-api
https://www.khronos.org/opengl/wiki/FAQ


OpenGL – “Open Graphics Library”

• Rendering Pipeline: Sequence of steps taken to render objects

• Immediate mode vs Core-profile
• Immediate mode: Pipeline is fixed; developers are limited to existing 

functions;
• inefficient, but easy to learn

• Core-profile: Pipeline is modular; development is flexible by editing parts 
of pipeline
• more flexible and efficient, but more difficult to learn

Source: https://learnopengl.com/Getting-started/OpenGL
Source: https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview 4

https://learnopengl.com/Getting-started/OpenGL
https://www.khronos.org/opengl/wiki/Rendering_Pipeline_Overview


OpenGL – Open Graphics Library

• OpenGL is a state machine
• State: information used by the rendering system (e.g. vertex position, colour)

• Objects: container for OpenGL’s states (e.g. vertex array object)

• OpenGL Context: object that holds all of OpenGL

Source: https://www.khronos.org/opengl/wiki/OpenGL_Object
Source: https://www.khronos.org/opengl/wiki/OpenGL_Context 5

https://www.khronos.org/opengl/wiki/OpenGL_Object
https://www.khronos.org/opengl/wiki/OpenGL_Context


OpenGL Loading Library

• Library that loads pointers to OpenGL functions
• required to access functions from OpenGL versions above 1.1

• abstracts away the difference between the loading mechanisms on different 
platforms

• We’ll be using “glad” (Multi-Language GL/GLES/EGL/GLX/WGL 
Loader-Generator)

Source: https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library
6

https://www.khronos.org/opengl/wiki/OpenGL_Loading_Library


GLFW – “Graphics Library FrameWork”

• Utility library to create and manage windows, OpenGL context, and 
input controls (e.g. mouse & keyboard input)

Source: https://www.glfw.org/
7

https://www.glfw.org/


Putting it together

GPU Driver OpenGL Your Program
OpenGL 
Loading 
Library

Interface 
(e.g. GLFW)

8

Rendering

Events from 
input controls


