1) Who developed the first interactive computer animation system:
 Ivan Sutherland at MIT
 Alvy Ray Smith At the University of Utah
 Marceli Wein and Nestor Burtnyk at the NRC

2) What is the value of $\tan \left(\frac{\pi}{4} \right)$?

3) Which of the following operation(s) is/are commutative:
 Vector addition
 Vector subtraction
 Dot Product
 Cross product
 Multiplication of a vector by a number.

4) Does the equality $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ hold for any vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$? Some vectors? Never? Justify your answer.

5) Consider vectors defined as follows:

   ```
   struct V3f
   {
       float x, y, z;
       V3f(float x1, float y1, float z1) {x=x1; y=y1; z = z1}
       V3f() {x=0; y=0; z=0}
   };
   ```

 Define the overloaded operator * for computing the dot product of two vectors in C++.
6) Write the transformation matrix for rotating by angle α around the y axis in 3D.

7) Point P has homogeneous coordinates $[1 \ 2 \ 3 \ 4]^T$. What are its x, y, z coordinates in 3D?

7) Which of the following operation(s) can be performed as matrix multiplication without using homogeneous coordinates:
 Translation
 Scaling with respect to the origin of the coordinate system
 Parallel projection
 Perspective projection
 Rotation with respect to the origin of the coordinate system

8) What is Rodrigues’s formula for?

9) What are the normalized device coordinates (NDC)?

10) Oblique projections are a special case of:
 Orthographic projections
 Parallel projections
 One-point perspective
 Two-point perspective
 Three-point perspective