Shading
(intfroduction to rendering)

Rendering: simulation of light transport

» Diffuse scattering
o matt surfaces
< Specular reflection
o shiny surfaces
o highlight
< Transparency
o glass, water
o penetrate the surface
< Global light transport
o realism

Global illumination

No multiple diffuse reflections Multiple diffuse reflections

Local
illumination

A (modest) example of shading

<+ Input:
o a 3D object
o Material and color of the object
o Position and structure of the light source
o ‘Intensity” of the light source
< Output:

o Color and intensity of points of the given object

Dealing with color

» Three component intensity (red, green, blue)

< Luminance (intensity) of the source
o Red component of source —— red component of image
o Green componentof source —— green component of image

o Blue component of source —— blue component of image

L)

*

Three similar but independent calculations

)

*

We focus on one scalar value only

Diffuse reflection

<+ A perfect diffuse reflector (Lambertian
surfacee) scatters the light equally in all
directions

< Same appearance to all viewers
o Material of the surface
o The position of the light

» Same appearance to all viewers

Diffuse: Two important vectors

< To compute the intensity at P, we need
o The unit normal vector N,
o The unit vector L, from P to the light

Normals

o What direction is the surface facing?

n

VO

V2

V1

CrossProduct

axb

bXxa
=-aXb

o h.x=a.y*b.z-az*b.y
o hhy=a.z*b.x-ax*b.z
o n.z=ax*by-ay*b.x

Normals

o A=V2-V1
o B=V0-V1
o N=AxB

VO

V2

V1

Lambert's cosine law

< I : diffuse reflection at P
*] =1k, cos(L, N) :]pkdf, e N
< 1, intensity of the light from source

% 0 <k; <1:coefficient of diffuse reflection

Coefficient of diffuse reflection

< k;1s usually determined by a trial and error
< Examples:

Component Gold Black plastic Silver
Red 0.75 0.01 0.5
Green 0.6 0.01 0.5
Blue 0.22 0.01 0.5
k,=0.05 k,=0.25 k=05 k,=0.75

Specular reflection

< Diffusive reflection: no highlights, rough surface
» Specular reflection: highlights, shiny and smooth surfaces
<+ View dependent reflection

K/

Specular: Three important vectors

< To compute the intensity at P, we need
o The unit normal vector N,
o The unit vector L, from P to the light
o The unit vector V, from P to the viewer

The Phong model for specular reflection

< I : specular reflection at P
* I=Lk cos" =1k(ReV)
< 1, intensity of the light from source

¢ 0 <k, <1: coefficient of specular reflection

% n: controls “shininess”

N N
L R L R
I
)/'V
P P

The shininess coefficient

t COS

increasing n

Ambient light

< "Physical rules” are too simplified
< No indirect or global interaction of light

< A hack to overcome the problem: use “ambient light”

Ambient light specification

» Not situated at any particular point

» Spreads uniformly in all directions

* 1 :ka[a

< [, : intensity of ambient light in the environment

< [:ambient light at a given point

¢ 0 <k, < 1:coefficient of ambient light reflection

ka:O ka:0-5 ka:]-

A combined model
(The Phong local illumination model)

< The final model = diffuse + specular + ambient

o I=Lk(LeN)+1k(R*V) +1k,

Example: two light sources

% Right Light=(1.0,0.0,0.0)
+ Left Light=(1.0,1.0,1.0)

Multiple light sources

<+ The total reflection at p is the
sum of all contributed intensities from all sources
<+ “Standard” OpenGL supports up to 8 light sources

T _jal x|

Shading polygon meshes

Brute-force idea:
for each face in the mesh
for each point on the face
find normal at this point
use Phong model to find the color
<+ These two steps require large a
(relatively) amount of computations

< Interpolated polygon shading is a
computationally efficient alternative

Scan-converting polygons

< Polygon- fill routine
< Convex polygons can be filled particularly efficiently
< Convex object definition

A S (N

/\

convex non-convex

In which space should polygons be filled?

uau 7L0 afjl:jr) G,Ia/‘ 7Lo a.// P/XC[.S /'/’SI'J'C oF a grven

Tr,'qngle, A‘ﬁf;% ? /(\ 3D mes),
~Find Scren eccavainates
. %)y _ K, 13 , _ :
R =L 8\]’ = [jgll F;"[2 reszi4) pipeicne
Houws 2

- Rl He Hfo\t\g]e, ThpT v R Screen
. R/ | p Coavdlnnle
: , y o 2 G 5
WHny Sewn -line @[jahuw, o T
e P

jbal: i P 2
1

Scan-converting convex polygons:
Flat shading

for each face in the mesh {
find color ¢ for the pixel at (x,y)
for (Y=Yvottom; ¥Y<=Viop, y++){
find Xjer @aNd X;jgne
for (X=X, X<= Xyigns, X++)
set the color of fragment at (x,y) to ¢

Flat shading

o Individual facets are visualized
o Same color for any point of the face

o OpenGL: glShadeModel(GL_FLAT)

Flat versus smooth shading

4

L)

» Flat shading is particularly efficient
» Not suitable for smooth objects

L)

4

L)

L)

(Mach band effect)

Face vs. "vertex” normals

o For each triangle we can define a normal for the face

o For each vertex we an define a normal by interpolating
normals of attached faces

N Vertex normal

Face normal

V2

VO

V1 .

Smooth shading (Gouraud)

< Gouraud shading: interpolates values of ¢

< Bilinear interpolation

¢y =(1—p)er + Bes
er = (1= y)er + ez
c=(1-a)g+ acr

% More expensive than flat shading 1=

Gouraud shading

Toward the Phong interpolation:
intferpolating vertex normals

< Polygonal meshes don't
have normal at the vertices

<+ But they (often) approximate
a smooth underlying surface

<+ A simple estimate for vertex
normal:

the nomalized average of the
normals of the faces

m =mni+np+n3 + ng

n — M
ud

Phong shading (interpolation)

< Better realism for highlights

\/
0‘0

o
o
o2
G

*

\/
0‘0

Use normal of vertices to interpolate normal of

interior points

_inear interpolation of n, and n; —. n,
_inear interpolation of n, and n, — n,
_inear interpolation of n,and n, — n

Normalize n
Drawback: relatively slow

A comparison

" Gouraud shading - Phong shading

Shading: local illumination mode
vs. interpolation

| aver age nermol yectol

A ppwacbes

Shadke each on (hre”es early Oﬂom,»
) USQ avarage mﬂf «f .197 the Vc1ﬁce> |
n/etpo/on‘e e the colov space]4“/' alowe Heo
Wee scane %ues cwo?)
Use avm norudl veckw at Hee Jedz@a
u.!etpo/ e e space OP nowead veco f’hon?)

| t(

Pilolls - what should fe dufepladed where

[—HH
(u/hai‘ bappeus here 2

@@@

alsbof S haf

Hidden surface/line removal

% Visible surface

o Parts of scene that are
visible from a chosen
viewpoint

< Hidden surface

o Parts of scene that are not
visible from a chosen
viewpoint

Back-face removal

<+ Also called back-face culling

<+ We see a polygon if its normalis
pointed toward the viewer

+ Condition: C0S6 > 0 or n.v > 0

at

Digression: Silhouette (contour) extraction

<+ Silhouette lines are very important for visualizing objects(very
useful in the traditional art)

<+ Any edge shared by a front-facing polygon and a back-facing
polygon is a silhouette edge (but may be hidden)

<+ Sample application: NPR

Is back-face removal enough?

< It fails for a non-convex surface
< It can’t recognize partly obscured faces

Hidden-surface algorithms

+ Object-space é- é- A- -

(a)
o Comparison within real 3D scene

o Works best for scenes that contain few polygons

<+ Image-space

o Decide on visibility at each pixel's position

COP

Z-buffer (depth-buffer)

<+ A commonly used image-space approach to hidden-surface
removal

< Each location in the z-buffer contains the distance of the closest
3D point.

<+ Use the intensity (color) of the nearest 3D point for each pixel

A

Ll
lve)

/

N

Recall polygon fill algorithm

for each face in the mesh
for (Y=Yvottom Y<=Viop; Y*++) 1
find Xier @Nd Xjigps
fOf (XzX/eft; X<= Xright; X++)

find color ¢ for the pixel at (x,y)

color,

color;

color,

color,

Xleft

Xright

Screen space

The Z-buffer algorithm

for all positions (x,y) on the screen
frame(x,y) = background
depth(x,y) = max_distance
end
for each polygon in the mesh
for each point(x,y) in the polygon-fill algorithm
% compute z, the distance of the corresponding 3D-point from COP
if depth(x,y) >z // current point is closer
depth(x,y) =z
frame(x,y) = [(p) //shading
endif
endfor
endfor

Some facts about the z-buffer algorithm

< After the algorithm
o Frame buffer contains intensity values of the visible surface
o z-buffer contains depth values for all visible points

<+ For the step x in algorithm
o We know d,, d,, d; and d, from vertices of the mesh
o Use linear interpolation for other points

ds

Beyond what we just learned...

Transpadg
+ refradl

Traslucency

Subsurface scattering

Light
Interacting
with Skin
® S &

Subsurface
scattering

Global illumination

.

S
] (]

pating'medias
ia
-

Al

