
Shading
(introduction to rendering)

Rendering
v We know how to specify the geometry but how is the

color calculated

Rendering
v We know how to specify the geometry but how is the

color calculated

Rendering: simulation of light transport

v Diffuse scattering
o matt surfaces

v Specular reflection
o shiny surfaces
o highlight

v Transparency
o glass, water
o penetrate the surface

v Global light transport
o realism

Global illumination

No multiple diffuse reflections Multiple diffuse reflections

Local
illumination

v Input:
o a 3D object
o Material and color of the object
o Position and structure of the light source
o “Intensity” of the light source

v Output:
o Color and intensity of points of the given object

A (modest) example of shading

Dealing with color

v Three component intensity (red, green, blue)

v Luminance (intensity) of the source

o Red component of source red component of image

o Green component of source green component of image

o Blue component of source blue component of image

v Three similar but independent calculations

v We focus on one scalar value only

Diffuse reflection

v A perfect diffuse reflector (Lambertian
surfacee) scatters the light equally in all
directions

v Same appearance to all viewers
o Material of the surface
o The position of the light

v Same appearance to all viewers

Diffuse: Two important vectors

v To compute the intensity at P, we need
o The unit normal vector N,
o The unit vector L, from P to the light

L

N

P

θ

Normals

o What direction is the surface facing?

CrossProduct

o n.x = a.y * b.z - a.z * b.y
o n.y = a.z * b.x - a.x * b.z
o n.z = a.x * b.y - a.y * b.x

Normals

o A = V2 – V1
o B = V0 – V1
o N = A x B

Lambert’s cosine law

v I : diffuse reflection at P
v

v Ip: intensity of the light from source

v 0	 ≤ 𝑘%	 ≤ 1 ∶	coefficient of diffuse reflection

NLkINLkII dpdp

!!!!
==),cos(●

Coefficient of diffuse reflection
v kd is usually determined by a trial and error
v Examples:

Component Gold Black plastic Silver
Red 0.75 0.01 0.5
Green 0.6 0.01 0.5

Blue 0.22 0.01 0.5

kd=0.05 kd=0.25 kd=0.5 kd=0.75 kd=1

Specular reflection

v Diffusive reflection: no highlights, rough surface
v Specular reflection: highlights, shiny and smooth surfaces
v View dependent reflection

Specular: Three important vectors

v To compute the intensity at P, we need
o The unit normal vector N,
o The unit vector L, from P to the light
o The unit vector V, from P to the viewer

L

N

V

P

v I : specular reflection at P
v

v Ip: intensity of the light from source

v 0	 ≤ 𝑘(≤ 1: coefficient of specular reflection

v n: controls “shininess”

The Phong model for specular reflection

P

N
L R

P

N
L R

V

n
sp

n
sp VRkIkII)(cos

!!
== ●

𝑅 = 2 𝐿 - 𝑁 𝑁 − 𝐿	 (why?)

The shininess coefficient

1=n 2=n 4=n 6=n

cos

0 90o-90o

increasing n

Ambient light

v “Physical rules” are too simplified
v No indirect or global interaction of light

v A hack to overcome the problem: use “ambient light”

Ambient light specification

v Not situated at any particular point
v Spreads uniformly in all directions
v

v Ia : intensity of ambient light in the environment
v I : ambient light at a given point
v 0	 ≤ 𝑘0	 ≤ 1 : coefficient of ambient light reflection

ka=0 ka=0.5 ka=1

aaIkI =

A combined model
(The Phong local illumination model)

v The final model = diffuse + specular + ambient

v aa
n

spdp kIVRkINLkII ++=)()(
!!!!

●●

Example: two light sources

v Right Light=(1.0,0.0,0.0)
v Left Light=(1.0,1.0,1.0)

Multiple light sources

v The total reflection at p is the
sum of all contributed intensities from all sources

v “Standard” OpenGL supports up to 8 light sources

Shading polygon meshes
Brute-force idea:

for each face in the mesh
for each point on the face

find normal at this point
use Phong model to find the color

v These two steps require large a
(relatively) amount of computations

v Interpolated polygon shading is a
computationally efficient alternative

Scan-converting polygons

v Polygon- fill routine
v Convex polygons can be filled particularly efficiently
v Convex object definition

Scan line

Single run Multiple run

convex non-convex

In which space should polygons be filled?

Scan-converting convex polygons:
Flat shading

for each face in the mesh {
find color c for the pixel at (x,y)
for (y=ybottom; y<=ytop; y++) {

find xleft and xright

for (x=xleft; x<= xright; x++)
set the color of fragment at (x,y) to c

}
}

Flat shading

o Individual facets are visualized

o Same color for any point of the face

o OpenGL: glShadeModel(GL_FLAT)

Flat versus smooth shading

v Flat shading is particularly efficient
v Not suitable for smooth objects

(Mach band effect)

Face vs. “vertex” normals

o For each triangle we can define a normal for the face

o For each vertex we an define a normal by interpolating
normals of attached faces

v Gouraud shading: interpolates values of c

v Bilinear interpolation

v

v More expensive than flat shading

Smooth shading (Gouraud)

𝑐1

𝑐2

𝑐3

𝑐4 𝑐5
𝑐 𝛼1− 𝛼

1 − 𝛽

𝛽

1 − 𝛾

𝛾

Gouraud shading

Toward the Phong interpolation:
interpolating vertex normals

v Polygonal meshes don’t
have normal at the vertices

v But they (often) approximate
a smooth underlying surface

v A simple estimate for vertex
normal:
the nomalized average of the
normals of the faces

Phong shading (interpolation)

v Better realism for highlights
v Use normal of vertices to interpolate normal of

interior points
v Linear interpolation of n1 and n3 nl

v Linear interpolation of n1 and n2 nr

v Linear interpolation of nl and nr n
v Normalize n
v Drawback: relatively slow

n1

n2

n3 nl
nrn

A comparison

Shading: local illumination mode
vs. interpolation

Hidden surface/line removal

v Visible surface
o Parts of scene that are

visible from a chosen
viewpoint

v Hidden surface
o Parts of scene that are not

visible from a chosen
viewpoint

Back-face removal

v Also called back-face culling
v We see a polygon if its normal is

pointed toward the viewer
v Condition:

Digression: Silhouette (contour) extraction

v Silhouette lines are very important for visualizing objects(very
useful in the traditional art)

v Any edge shared by a front-facing polygon and a back-facing
polygon is a silhouette edge (but may be hidden)

v Sample application: NPR

Is back-face removal enough?
v It fails for a non-convex surface
v It can’t recognize partly obscured faces

Hidden-surface algorithms

v Object-space

o Comparison within real 3D scene
o Works best for scenes that contain few polygons

v Image-space
o Decide on visibility at each pixel’s position

Z-buffer (depth-buffer)

v A commonly used image-space approach to hidden-surface
removal

v Each location in the z-buffer contains the distance of the closest
3D point.

v Use the intensity (color) of the nearest 3D point for each pixel

Recall polygon fill algorithm

Screen space

for each face in the mesh
for (y=ybottom; y<=ytop; y++) {

find xleft and xright

for (x=xleft; x<= xright; x++)
find color c for the pixel at (x,y)

}

The Z-buffer algorithm

for all positions (x,y) on the screen
frame(x,y) = background
depth(x,y) = max_distance

end
for each polygon in the mesh

for each point(x,y) in the polygon-fill algorithm
compute z, the distance of the corresponding 3D-point from COP
if depth(x,y) > z // current point is closer

depth(x,y) = z
frame(x,y) = I(p) //shading

endif
endfor

endfor

Some facts about the z-buffer algorithm

v After the algorithm
o Frame buffer contains intensity values of the visible surface
o z-buffer contains depth values for all visible points

v For the step in algorithm
o We know d1, d2, d3 and d4 from vertices of the mesh
o Use linear interpolation for other points

d1

d2

d3

d4

Beyond what we just learned...

Transparency
+ refraction

Caustics

Traslucency

Subsurface scattering

Subsurface
scattering

More advanced renderingGlobal illumination

Participating media

