Rasterization

CPSC 453

Transform to 2D

Transform to 2D

Rasterization aka Scanline renders

Rasterization

Rasterization

Implicit Line equation

Hard to represent line x=0

Implicit Line equation

Implicit Line equation

$$f(x,y) \equiv (y_0 - y_1)x + (x_1 - x_0)y + x_0y_1 - x_1y_0 = 0$$

A
B
C

Midpoint algorithm $m \in (0,1]$

$$y = y_0$$

for $x = x_0$ to x_1 do
draw (x, y)
if (some condition) then
 $y = y + 1$

- "thinnest line" (1 pixel)
- no gaps

Line drawing: midpoint algorithm (incremental)

Line drawing: midpoint algorithm (incremental)

Similar arguments for $\,m
otin(0,1]\,$

7 steps –
$$\Delta=rac{1}{7}$$

+		+	+	+		+	+	+	+	+		+	+	
				•								٠		
				٠		٠	٠		٠			٠	pì	
				+	٠			+	٠				•.	
		+	+	*								٠		
				•					٠			٠		
	'n					•		٠			٠	٠		Γ
	P		x	*	+	*		+	+	.*	+		+	Γ
			*	٠		٠	٠		٠			٠		
				•					٠			٠		Γ
				٠	٠			٠			٠	٠		Γ
•		+	+	*		*	+	+	+		+	+	+	Γ
*				٠		٠	٠		٠			٠	*	
+				٠		٠	٠		٠	٠		٠		Γ
			+			+	•					٠		Γ
														Г

https://observablehq.com/@infowantstobeseen/drawing-lines

Triangle Rasterization: Raster each line?

Triangle Rasterization

Inside-outside test

Interpolation

$$eta=2, \gamma=0.5$$

Non-orthogonal coordinates

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}).$$

$$eta=2, \gamma=0.5$$

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}).$$
$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}.$$

$$\beta = 2, \gamma = 0.5$$

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}).$$
$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}.$$
$$\alpha \equiv 1 - \beta - \gamma,$$

$$\beta = 2, \gamma = 0.5$$

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}),$$
$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}$$
$$\alpha \equiv 1 - \beta - \gamma,$$
$$\alpha + \beta + \gamma = 1.$$

$$eta=2, \gamma=0.5$$

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}).$$
$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}.$$
$$\alpha \equiv 1 - \beta - \gamma,$$
$$\alpha + \beta + \gamma = 1.$$

$$\mathbf{p}(\alpha,\beta,\gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c},$$

$$eta=2, \gamma=0.5$$
Triangle Rasterization: barycentric coordinates

$$\mathbf{p} = \mathbf{a} + \beta(\mathbf{b} - \mathbf{a}) + \gamma(\mathbf{c} - \mathbf{a}).$$
$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}.$$
$$\alpha \equiv 1 - \beta - \gamma,$$
$$\alpha + \beta + \gamma = 1.$$

$$\mathbf{p}(\alpha,\beta,\gamma) = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c},$$

$$eta=2, \gamma=0.5$$

barycentric coordinates

Barycentric Coords. for Δabc : $\alpha = 0.44$, $\beta = 0.21$, $\gamma = 0.35$

observablehq.com/@infowantstobeseen/barycentric-coordinates

barycentric coordinates

All points *inside* the triangle have:

$$0 < \alpha < 1,$$

 $0 < \beta < 1,$
 $0 < \gamma < 1.$

Barycentric Coords. for Δabc : $\alpha = 0.65$, $\beta = -0.14$, $\gamma = 0.49$

observablehq.com/@infowantstobeseen/barycentric-coordinates

Calculate barycentric coordinates

$$\begin{bmatrix} x_b - x_a & x_c - x_a \\ y_b - y_a & y_c - y_a \end{bmatrix} \begin{bmatrix} \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} x_p - x_a \\ y_p - y_a \end{bmatrix}$$

Calculate barycentric coordinates

Use geometric reasoning...

Triangle Rasterization

 $x_{\min} = \text{floor}(x_i)$ $x_{\max} = \operatorname{ceiling}(x_i)$ $y_{\min} = \text{floor}(y_i)$ $y_{\text{max}} = \text{ceiling}(y_i)$ for $y = y_{\min}$ to y_{\max} do for $x = x_{\min}$ to x_{\max} do $\alpha = f_{12}(x, y) / f_{12}(x_0, y_0)$ $\beta = f_{20}(x, y) / f_{20}(x_1, y_1)$ $\gamma = f_{01}(x, y) / f_{01}(x_2, y_2)$ if $(\alpha > 0 \text{ and } \beta > 0 \text{ and } \gamma > 0)$ then $\mathbf{c} = \alpha \mathbf{c}_0 + \beta \mathbf{c}_1 + \gamma \mathbf{c}_2$ drawpixel (x, y) with color c

Option 2) Barycentric coordinates via areas

Quad Rasterization?

• Bilinear interpolation

Quad Rasterization?

- Bilinear interpolation... but is not unique (e.g. mean value)
- Hardware is specifically optimized for triangles
- Graphics drivers typically split input geometry into triangles

Shared Edges

https://observablehq.com/@infowantstobeseen/drawing-triangles

Shared Edges

Clipping

wikipedia.org (graphics pipeline)

Most pernicious: near plane clipping

Most pernicious: near plane clipping

Choose the space to clip within

Choose the space to clip within

for each of six planes do
if (triangle entirely outside of plane) then break (triangle is not visible)
else if triangle spans plane then clip triangle
if (quadrilateral is left) then break into two triangles

Use geometric reasoning...

Minimal 3D Pipeline

Sort 3D rendering by object depth

Wikipedia.org

Occlusion cycle: painter's algorithm breaks down...

Wikipedia.org

Sort 3D rendering by depth

∞	8	8	8
8	8	8	8
8	8	8	8
∞	8	8	8

1	8	8	8
1	3	8	8
1	3	5	8
1	3	5	7

Triangle A depth values

Triangle A

8	8	8	1
8	8	3	1
8	5	3	1
7	5	3	1

Triangle B depth values

Triangle B

1	8	8	1
1	3	3	1
1	3	3	1
1	3	3	1

Triangle A & Triangle B

Combined z-buffer

A simple three-dimensional scene

- View volume culling
- Backface culling
- Occlusion culling

ليهر

.