Rasterization

CPSC 453

Transform to 2D

M\" p NI orth Screen

Transform to 2D

Ipixel |VCIZ ‘l
Hpixel — (MVpM orth) Y

Zcanonical J { J

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

APPLICATION

COMMAND STREAM

VERTEX PROCESSING

TRANSFORMED GEOMETRY

RASTERIZATION

FRAGMENTS

FRAGMENT PROCESSING

FRAMEBUFFER IMAGE

DISPLAY

We want:

e Ffast
* Efficient

* Simple

—

Rasterization aka Scanline renders

* Finding all pixels in an image occupied by a geometric primitive

Rasterization

* Finding all pixels in an image occupied by a geometric primitive

Rasterization

* Finding all pixels in an image occupied by a geometric primitive

Implicit Line equation

Hard to represent line x=0

Implicit Line equation

fx,y) =Ax + By + C -

Implicit Line equation

Midpoint algorithm m € (0, 1]

Y = Yo
for x = zg to 1 do
draw(z, y)

if (some condition) then
y=y+1

* “thinnest line” (1 pixel)
* no gaps

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

L Y=TYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive
®

Y =UYo
for x = g to x1 do
draw(x, y)
if f(x+1,y+4 0.5) <0 then
y=y+1

Line drawing: midpoint algorithm

* Finding all pixels in an image occupied by a geometric primitive

Y =Yo
for x = g to x1 do
draw(x, y)
if f(x+ 1,y + 0.5) < 0 then
y=y+1

Line drawing: midpoint algorithm (incremental)

f(z,y) = (yo —y1)x + (r1 — 20)y + xoy1 — x1yo = 0
fle+1,y) = f(z,y) + (yo — y1)
f($+17y+1):f<$,y)+(y0—y1>+(xl_$0)

Line drawing: midpoint algorithm (incremental)

f@,y) = (Yo —y1)r + (1 — x0)y + Toy1 — x1yo = 0
flz+1,y) = f(z,y) + (yo — y1)
f($+1,y+1):f(ﬂj,y)+(y0—y1>+<xl_$0)

Y =1Yo
d= f(xo+1,y0 + 0.5)
for xr = z¢ to x; do
draw(zx, y)
if d < 0 then
y=y+1
d=d+ (x1 —x0) + (Yo — y1)
Potential numerical issues? RSN
d=d+ (yo—y1)

Line drawing: midpoint algorithm

Similar arguments for 771 §é (O, 1]

Interpolating values

* Finding all pixels in an image occupied by a geometric primitive

Interpolating values

* Finding all pixels in an image occupied by a geometric primitive

7steps— /A = —
7

Interpolating values

* Finding all pixels in an image occupied by a geometric primitive

7steps— /A = —
7

Interpolating values

https://observablehg.com/@infowantstobeseen/drawing-lines

Triangle Rasterization: Raster each line?

Triangle Rasterization

Inside-outside test Interpolation

Triangle Rasterization: barycentric coordinates

Non-orthogonal coordinates

Triangle Rasterization: barycentric coordinates ||l

p=a+g(b—a)+vy(c—a).

Triangle Rasterization: barycentric coordinates [l

p=a+g(b—a)+vy(c—a).

Triangle Rasterization: barycentric coordinates |Jil§

p=a+g(b—a)+vy(c—a).

Triangle Rasterization: barycentric coordinates |l§

p=a+g(b—a)+vy(c—a).

p(a, 3,7) = ca+ Bb + vc,

Triangle Rasterization: barycentric coordinates |l§

p=a+g(b—a)+vy(c—a).

p(a, 3,7) = ca+ Bb + vc,

barycentric coordinates

All points inside
the triangle have:

observablehg.com/@infowantstobeseen/barycentric-coordinates

barycentric coordinates

All points inside
the triangle have:

observablehg.com/@infowantstobeseen/barycentric-coordinates

Calculate barycentric coordinates

Calculate barycentric coordinates

Use geometric reasoning...

Triangle Rasterization

Tmin = floor (x;)
Tmax = ceiling (z;)
Ymin = floor (y;)
Ymax = ceiling (y;)
for y = yYmin 10 Ymax do
for ©r = 2y 1O Tpax doO
a = fi2(x,y)/ fi12(xo, yo)
B = fa0(z,y)/ f20(T1,91)
v = for(x,y)/ for(z2,y2)
if (0 > 0and 3> 0 and v > 0) then
Cc = aco + ¢y + e
drawpixel (x,y) with color ¢

Option 2) Barycentric coordinates via areas

Quad Rasterization?

* Bilinear interpolation

lerp(t,, t3, U)

O
v)O

O

lerp(ty, t1, U)

Quad Rasterization?

* Bilinear interpolation... but is
not unique (e.g. mean value)

* Hardware is specifically
optimized for triangles

* Graphics drivers typically split
input geometry into triangles

Shared Edges

https://observablehqg.com/@infowantstobeseen/drawing-triangles

Shared Edges

o Offscreen point

Clipping

ﬁk\
£> .
! Y
I\
I\
L
/ \
/ \
/ \
! _
PR

wikipedia.org (graphics pipeline)

Clipping

clipping
\ plane
N\

\

N\

Clipping

Neal
Clipping
Plane

0.0
=
Qo
o
O
()
c
©
(ol
.
(qe)
)
c
n
)
0
=
c
.
()
(ol
)
wn
o)
2

Most pernicious: near plane clipping

I
b I

gaze
direction

b’

|
|
|
|
[
a
[
|
[

eye +— a’
| gaze |
| direction |
I I

Eye Near Far
Plane Plane Plane

Choose the space to clip within

(u=l, v=b, w=n

Choose the space to clip within

for each of six planes do
if (triangle entirely outside of plane) then
break (triangle is not visible)
else if triangle spans plane then
clip triangle
if (quadrilateral is left) then
break into two triangles

Use geometric reasoning...

clipping
\ plane
N\
N\

N\

Minimal 3D Pipeline

Sort 3D rendering by object depth

Wikipedia.org

Occlusion cycle: painter’s algorithm breaks down...

>

Wikipedia.org

Sort 3D rendering by depth

z-Buffer

z-Buffer

Triangle A

===
e -]

B
113157

Triangle A depth values

z-Buffer

Triangle B Triangle B depth values

z-Buffer

Triangle A & Triangle B Combined z-buffer

A simple three-dimensional scene

Z-buffer representation

z-Buffer: “z-fighting”

Culling primitives

* View volume culling
* Backface culling
* Occlusion culling

XK

SESISZS

o

Yy

