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Introduction 
Some recent functional-structural plant models (FSPMs) combine an explicit representation of 
plant architecture with a mechanistic approach to carbohydrate (C) allocation [1]. In this context, 
a plant is represented by a set of connected semi-autonomous modules and the C flow into the 
growing modules is determined by the intrinsic properties of the modules, environmental 
conditions and the sink/source interactions within the whole system [2]. While numerical methods 
for calculation of C flow within the plant are now available [3], there are no direct methods for 
dynamical modelling of resource limited growth of plant modules such as leaves and internodes. 
A logistic function [4] 
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where t  is time, A is an asymptote (final size of an organ/population), 0t is an inflection point, 

and τ  is a duration of rapid expansion phase, is often used for retrospective representation of the 
growth data and can be used in empirical modelling of growth. A differential equation (DE)  

⎟
⎠

⎞
⎜
⎝

⎛ −=
A

ta
ta

dt

tda )(
1)(

1)(

τ
,        (2) 

often associated with logistic growth [5], is not suitable for use in mechanistic modelling, where 
the final size A  is a result of the system dynamics and cannot be stated a priori. Thornley & 
France [6, 7] suggested modification of (2) for modelling limited growth  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅⋅=

)(

)(
1)(

)(
1 tA

ta
tarf

dt

tda

f

f
f

f ,        (3a) 

where r  is a parameter, 10 1 ≤≤ f  represents a degree of limitation on growth and )(tAf is a 

projected final size - a new state variable that can decrease depending on the growth limitation, 
according to the equation 
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where D  is a parameter and 10 2 ≤≤ f  is interpreted as a degree of limitation of development 
and a maximum rate of development, respectively [7]. 

In the current paper I propose an alternative approach that is based on a single linear DE 
and does not include the notion of final size. I derive analytical solutions for growth responses to 
constant and pulse-like growth limiting conditions and show that this approach, although being 
simpler, is equivalent to the formulation of Thornley & France (3). 
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Linear equation for logistic growth  
Derivation of equation (2), given in Thornley & Johnson [5], is based on three assumptions: 1) the 
growth machinery is proportional to current size )(ta , 2) the growth machinery works at a rate 

proportional to the amount of substrate )(tS , 3) there is no net gain or loss from the system, so 

that the current amount of substrate )()( taAtS −= , where A  is an initial amount of the 
substrate. As a result, the growth is limited by the initial amount of substrate. The third 
assumption of this derivation does not hold for leaves and internodes of a growing shoot. These 
organs are connected to a common C pool; hence the amount of C available to each organ 
depends on the amount on photosynthesis and on competition with other organs. In addition, even 
when C is not limited, it does not result in indefinite growth of leaves and internodes; their growth 
curves can still be well approximated by the logistic function (1) [8]. According to experimental 
data on kiwifruit shoots, the parameterτ , which controls duration of expansion in these organs, 
depends mostly on temperature but not on C limitation [8]. Studies of leaf growth in wild-type 
and mutant of Arabidopsis thaliana under different light environments demonstrated a significant 
and robust negative correlation between the duration of expansion and the initial relative 
expansion rate [9]. Similar correlation, robust with respect to temperature, is established for 
kiwifruit growth under constant temperatures [8]. These results suggest the existence of an 
intrinsic growth pattern that originates within the organ and unfolds according to environmental 
conditions. This hypothesis is strongly supported by a controlled environment experiment on 
kiwifruit leaf growth under a set of step-wise changing temperature regimes (12/28/20 oC, 
20/28/12 oC, etc.) [10]. The growth curves of leaves in this experiment plotted against time were 
not logistic and showed distinct changes in growth rates, corresponding to the step-wise 
temperature changes. However, when the measured leaf area data were plotted against a new 
variable 
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where )(tT is a time course of temperature, each growth curve was well fitted ( 999.02 ≅r ) by a 

logistic function 1
0 ))exp(1()( −−+= ϕϕϕ Aa , where )( 00 tϕϕ = is an inflection point.  Apart 

from the final size, the growth curves for leaves grown under different temperature sequences 
differed only by the values of the inflection point 0ϕ , which was determined by the time of leaf 

appearance. 
Based on these results, I propose to represent the intrinsic growth pattern corresponding 

to logistic growth by a relative growth rate expressed as a function of organ developmental age, 
measured with respect to the inflection point, )( 0ϕϕα −= . It follows from (4) that  

τα /)( 0tt −= for  consttT =)( .        (5) 
For simplicity and for ease of comparison with existing results, in the following derivations I 
assume that consttT =)( and use time rather thanϕ as an independent variable in equations. 
However these derivations can be generalised for the case of variable temperature using ϕ as an 
independent variable. From (1) relative growth rate can be expressed in a form that depends on α
but not on the final size parameter A, leading to a linear DE for )(ta . Namely, 
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 is a relative growth rate determined by the organ age (5). The solution of (6) with an initial 
condition )( ata , where at  is a time of organ appearance, can be presented in the form  
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where  
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is a function that propagates the solution from 1t  to 2t . Formulation (6) corresponds to the case 
when the C is not limited and the growth is limited by an intrinsic growth rate depending on the 
organ age. Resource limitation on growth is modelled by introducing a multiplier 10 ≤< f  into 
the right-hand side of (6a), namely 
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In the context of transport-resistance sink-source allocation models, f  is interpreted as a sink 
response to C limitation and is usually represented by a non-linear function of C concentration in 
the vicinity of the sink [2, 3].  

Analytical solutions and applications 
Constant C limitation For constf =  (8) can be solved analytically using a substitution 

f
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and noting that )(ty  satisfies (6a). This gives  
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The upper asymptote of this solution (the final size) f
aaf tGtaA )),()(( ∞=  can be expressed in 

terms of the final size ),()( ∞= aa tGtaA  for unlimited growth, namely  
ff
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This solution coincides with a particular case of the well-known Richards function [11] or θ -
logistic [7]. Note that in the current formulation the final size is a function of the initial size, 
initial developmental age and the growing conditions. Hence the potential to reach a certain size is 
included via the initial conditions.  
 Fig. 1 shows the effects of growth limitation on the characteristics of the solution (10), 
time interval between appearance and inflection )( 0 aff tt −=μ , duration of growth defined as a 

time interval fd  between the organ appearance and reaching a fractionδ  of final size (e.g. 

δ =0.95), fff d μρ −= and final fA . In the vicinity of 1=f , the final size fA is very sensitive 

to the value of f  (Fig. 1b), while the effects on time characteristics are relatively small (Fig. 1a). 
The current analysis is in agreement with a recent study of leaf growth in kiwifruit [8] and 
explains that, even when leaf size was the most reduced by fruit presence, no deviation from 
logistic growth pattern was detected in the growth data. Indeed, the shape of the solution (10) is 
extremely robust in the vicinity of 1=f , e.g., for 8.0=f  the final size is considerably reduced, 
while the theoretical growth curve is practically undistinguishable from the fitted logistic (Fig. 
1a).  

Pulse-like C limitation. Note first that function G satisfies the following relationship, 
),(),(),( 313221 ttGttGttG =⋅         (12) 

graphically illustrated in Fig. 2a. A graphical solution of (8) for a pulse-like perturbation, where 
resources are limited 1<f  for a period of time ),( 21 tt , is shown in Figs. 2b,c and gives  
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Figure 1. Properties of resource-limited growth (a) Effect of f  on growth characteristics fA , 

fμ , fd , and fρ  (relative values of these variables with respect to values for unlimited growth 

A , μ , d , and ρ  are shown) (b) Growth curve (open circles) and its derivative (dotted line) for 

8.0=f , solid lines are the fitted logistic (1) (insert graph) and its derivative (main graph). 

Figure 2. Growth under pulse-like perturbation of C supply (a) Schematic of the equation (12) (b) 

Pulse-like perturbation of C with 1<f  for 21 ttt <<  (c) Solution of (8) for this case.  

Comparison with the approach by Thornley & France. Within the current approach, the 
projected final size variable )(tAf , introduced by Thornley & France [6, 7], can be interpreted as 

an asymptote of the solution for the case where C limitation applies from the moment of 
appearance to the moment t , namely

AttGtA f
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Substitution of )(tAf and )(ta f  (10) into the system (3) and some rearrangements, show that 

these functions satisfy system (3) if and only if 
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Although the approach by Thornley & France has four parameters, there are only two degrees of 
freedom in the parameter space, because the parameters enter equations (3) in the form of two 
products )( 2 Df ⋅  and )( 1 rf ⋅ . For any given values of τ  and f , the corresponding values of 
these products can be calculated from (15). Hence, the system (3) is equivalent to a single liner 
DE (8) with two parameters: τ - representing effects of environment (temperature) and f - 
representing effects of resource limitation.  

Further extensions. Using variable ϕ  (4), equation (8) can be generalised for the case of variable 
temperature. Taking advantage of linearity of this equation, analytical solution can be obtained for 
time-dependent )(tff = . The present approach can be extended to the Boltzmann function that 

is also used in plant modelling [8] using a substitution Btaty −= )()( , where B  is a lower 
asymptote of the Boltzmann function.

Conclusions 
The simple linear DE proposed here allows intrinsic patterns of leaf and internode growth, 
temperature effects and C limitation to be taken into account. In the context of mechanistic 
modelling, C availability within the vicinity of each module is a result of the system dynamics, 
hence the equations describing the growth of individual modules are solved simultaneously and C 
distribution within the system is determined as a part of the solution process [2, 3]. Numerical 
solutions for such systems are not always easy to interpret. Analytical solutions provide an 
additional insight into the problem. They are more transparent and allow analysis of relationships 
between the system variables as well as comparisons with other systems. The linear DE proposed 
here is equivalent to a non-linear system (3) proposed previously by Thornley & France [6]. This 
DE can be also used as a linear DE corresponding to the Richards function [11], also known as θ -
logistic or a “power-law logistic” [6, 7], allowing a mechanistic interpretation of these functions. 
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