
Non-incremental inference of 0L-systems with positive sample
Farah Ben-Naoum and Mustapha Mechab

EEDIS, UDL, Computer Science Department. Sidi Bel-Abbes Algeria bp 89 22000

Keywords: grammatical inference, non incremental Inference, positive sample, 0L-
system, rules generalization, self-similarity, heuristic training algorithm, method SAR.
Introduction
Many algorithms of grammatical inference were developed for several types of grammars
(Adriaans, Fernau and Van Zaanen, 2002). The inference problem consists of finding, from a set of
strings, a grammar that produces all the strings of this set (Miclet and Cornuéjols, 2002). We are
interested here by the inference of a particular class of L-systems, noted the 0L-systems
(Yokomori, 1992). We present a heuristic algorithm, which only uses positive sample
corresponding to either independent or developmental biological structures. The positive sample
noted I+ is the set of all strings that the inferred 0L-system must produce. It is a non-incremental
algorithm in the sense that the positive sample becomes unchanged (new strings cannot be added
progressively) (Miclet and Cornuéjols, 2002).
Biological motivation

Developmental biology and inference: The problem of inductive inference has in recent years
been extensively investigated. It has particular significance for developmental languages in which
the description of the developmental stages of an organism is formally defined as a series of strings
of symbols. The problem is to devise developmental rules which transform the strings of symbols
in a way consistent with observations for a particular species. In this sense, there is an overlap
between model building in developmental biology and the grammatical inference problem. This
problem enters the realm of developmental biology in the following way. The biologist interested
in a particular plant is confronted with a large number of experimental observations. His task is to
explain on the basis of such experimental results the way in which the particular plant develops
(Feliciangeli, Gabor and Herman, 1973).

Studying self-similarities in plant structures: In the growth processes of many living
organisms, especially plants, regularly repeated appearances of closely related biological structures
are readily noticeable. This phenomenon of self-similarity has been tentatively captured by several
botanical notions (Prusinkiewicz 2004), (Ferraro, Godin, and Prusinkiewicz, 2005). Our main
objective is to use the grammatical inference in the detection of this self-similarity from a symbolic
representation of a tree structure in development, or from several tree structures corresponding to
different varieties in the aim to compare them.
Complementary arguments for such a biological motivation, as well as some similar problems, are
discussed in (Herman and Walker, 1972).
Specificities of the proposed method
Inference of L-systems was recently studied using genetic programming (Jacob, 1998). By
proposing this new heuristic method we avoid some of the drawbacks of the genetic algorithms,
i.e.: uncertainty on the algorithm convergence, unknown time of convergence, the great spatial
complexity dependent on the size of the population ... (Koza, 1993). On the other hand, the
advantages of this algorithm, regarding to the other heuristic algorithms already proposed (Doucet,
1974; Feliciangeli, Gabor and Herman, 1973; Herman and Walker, 1972; Nevill-Manning and
Witten, 1997), are its ability to:
- work on tree structures while previous works were limited to simple sequences like red algae,
- perform on any kind of sequence (containing ordered or unordered strings of I+, independent or
developmental, structures), the others performs only on ordered sequences in development,

49-1

- generalize the rules by studying the possible existing recursivities. The generalization consists
on the creation of a grammar that generates the language containing the positive sample. By
comparison, let us consider the method of Nevill-Manning and Witten (1997) in which they
proposed an algorithm that forms a grammar from a sequence based on repeated phrases in that
sequence. Each repetition gives rise to a rule in the grammar, and the repeated subsequence is
replaced by a non-terminal symbol. In this case the grammar is inferred from a positive sample
containing only one sequence, and it can only generate this sequence without generalization (only
non-recursive grammar are inferred by this method). This process cannot represent the biological
development of a plant structure in which repeated modules as well as modules generated by a
regular developmental model, called self-similar modules, can be found. The detection of self-
similar modules and their representation by recursive rules avoids doing the generalization of the
resulting L-system. This represents the specificity of our new method.
Description of the SAR method
The particularity of L-systems is their ability to models the development of higher plants and
complex branching structures, described as configurations of modules in space; the term module
denotes any discrete constructional unit that is repeated as the plant develops (Prusinkiewicz,
Hammel, Mech, and Hanan, 1995).
The main idea in the inference of 0L-system generating a sequence of strings associated with the
sequence of structures of plants is to explore all sub-strings of the sequence strings and to select
those representing modules that correspond to two cases: In the first one, the selected module can
be decomposed into other nested modules; the nesting must be done in a regular manner which
leads to the creation of a recursive rule. In this case, the modules are called self-similar in the sense
that they are composed of a succession of possibly nested identical sub-modules. In the second
case, the selected module is only repeated in the sequence of the developmental structure, and then
the rule inferred simply associates one symbol with this module. These two cases are considered
respectively in the first and the second loop repeat of the SAR algorithm mentioned in the annex.
The selection of modules must take into account the vocabulary used to represent the branching
structure in the 0L-systems using the turtle interpretation (Prusinkiewicz, Hammel, Mech, and
Hanan, 1995). Each module corresponds to a valid plant structure if and only if the associated
string (containing brackets to represent branches) is well-parenthesed.
The proposed Method SAR: (search of self-similarities and redundancies) builds a 0L-system
starting from a positive sample I+={xi, i=1..|I+|} by making a partition of each string xi into repeated
or recursive sub-strings being able to be produced in the same step of derivation (to deal with the
parallelism in the derivation in the L-systems). This partition includes well-parenthesed sub-strings
lengths varying from n to 2 with n=len(xi). The recursive application of this principle to unit I+
enables us to reconstitute all the successive steps for the generation of all strings of I+.
The method SAR identifies in the limit the 0L-system generating I+ , since it makes it possible to
reduce successively all the strings of I+ after N steps (Gold, 1967), the algorithm then converges
towards a solution, starting from a finite N, i.e.HN-1(I+)= HN(I+). Where N is at most equal to the
number of productions created by the algorithm plus 1.
The method SAR was developed in python which requires about 550 lines for the algorithm. The
temporal complexity of SAR is O(r.m.n), where n=|xi| and xi is the longest string in the positive
sample, m is the size of the positive sample I+. In the worst case the algorithm creates 1 production
at each step of the two loops Repeat doing the detection of nested modules and the detection of
repeated modules in the SAR algorithm given in the annex, then the algorithm performs this
creation of productions r times, with r=max(number of recursive versus non-recursive symbols).
Examples
1) Positive sample I+ containing strings associated to independent plants. The first one
correspond to the step 3 of development of the plant of figure2(a) generated by the L-system

49-2

L1(Axiom: F productions: F FF-[Fc-F+F+F]d+[Fc+F-F-F]d c c, d d; homomorphism c , d ;), the
second correspond to the step 2 of development of the plant of figure2(b) generated by the
L-system L2(axiom: F productions: F FF+\[,+F-&Fc[-F+F+F+F]d-F]-\[,-&Fc[-F+F+F+F]d+F] c c, d d;
homomorphism c , d ;). The resulting inferred L-system must be the union of L1 and L2.

(a) (b)
Figure 2: (a) Steps 2, 3 and 4 of the plant generated by L1,

(b) Steps 2, 3 and 4 of the plant generated by L2, using the L-studio v.4.0.5 beta

Result of the SAR algorithm: axiom: h
productions:
h -> b h -> a
b->bb+\[,+bgbc[-b+b+b+b]d-b]-\[,gbc[-
b+b+b+b]d+b]
a -> aa-[ac-a+a+a]d+[ac+a-a-a]d
c -> c,
d -> d;

homomorphism:
b -> F
a -> F
g -> -&
c -> ,
d -> ;

The resulting L-system is the union of L1 and L2. The development of trees associated to L1 and L2
correspond respectively to the recursive symbols a and b in the inferred L-system; representing the
self-similarity in the development of the tow structures of figures 2(a) and 2(b). They also have
common sequences of successive ‘,’ and ‘;’ represented respectively by the recursive symbols c
and d. Then we find in the inferred L-system common rules corresponding to c and d.
2) Positive sample I+ containing a sequence of strings associated with different stages of
development of the plant (stages 2 and 3 of figure1).

Figure1: Steps 2,3,5 of the plant generated by the
L-system L1(Axiom: A, A A[+BA]A[-CA]A, B BF[-
FD], C CF[+FD], homomorphism A F, B F[-FD],
C F[+FD], D [F+F]) using L-studio v.4.0.5 beta

The resulting L-system L2 must
be equivalent to the one used to
create the positive sample. Result
of the SAR algorithm:
axiom: c
productions: homomorphism:
c -> c[+bc]c[-ac]c c -> F
b -> bF[-e] b -> F[-e]
a -> aF[+e] a -> F[+e]

e -> F[F+F]
The symbols c, a, b are recursive and
then represent self-similar parts in
the tree of figure1.

To study the equivalence between this resulting L-system L and the one used to generate I (noted
L), we verify whether they are isomorphic by an adequate change of the names of the generated
symbols. The SAR algorithm detects the repetition of F[F+F] represented by the production

2 +

1

49-3

e F[F+F] in L2, we also remark the repetition of FD in L1 with D [F+F]. Then the symbol e is
equivalent to FD. By replacing e by FD, and e F[F+F] by D [F+F] in L2, and after replacing the
axiom c (in L) by A (used in L), and the symbols b and a (in L) by respectively B and C (used in
L), we obtain: (

2 1 2

1 axiom: A, productions: D->[F+F], A->A[+BA]A[-CA]A, A->F, B->BF[-FD], B->F[-
FD], C->CF[+FD], C->F[+FD]). We thus obtain a transformed L-system identical to that
used to generate I .+

3) Positive sample I+ containing seven strings associated with an abstract language:
I+={[aaaa[ccccccc]aaaadt]b[aaaa[cc]aaaadt]b[aaaa[ccccccc]aaaadt]b, dtcfcfcfdt[aaaaaa[ccccccc]aaaaaadt]b
[aaaaaa[ccccccc]aaaaaadt]bdt, dgrtmmmAmAmmmAmAmmmmmAmAmmmAmAmmm, dthgjdt, [dt][dt][dt],
[aaaaaa[cccccccccccc]aaaaaadt]b[aaaaaa[cccccccccccc]aaaaaadt]b, dtdthgdthgdtdtdthgdthgdtdt }
Result of the SAR algorithm: axiom: u
production
s:
u -> o
u -> p
u -> n

u -> dgrtA
u -> qkqpq
p ->
[i[e]iq]b

p ->
p[i[e]iq]b
o -> qoqoq
n -> n[q]

A -> mAmAm
k -> kcf
i -> ia
e -> ec

homomorp
hism:
u -> qsjq
s -> hg
q -> dt

o -> s
n -> [q]
k -> cf
i -> a
e -> c

This abstract example finally shows how the SAR approach may be used to infer rules from more
complex structures.
Conclusion
This paper addressed the problem of inferring a 0L-system from a sequence of tree structures. To
this end, we introduced the notion of self-similarity detected from symbolic representation of trees.
In practice, the proposed SAR method proved its efficiency for the inference of abstract languages
as well as for the languages which, associated with the turtle interpretation, expresses structures of
trees and their development.
The class of 0L-systems inferred by this method concern parenthesized languages generating tree
structures, to infer more realistic structures we must first study the learn-ability of each class of L-
systems (Fernau and De la Higuera, 2004; Yokomori, 1992) and next try to find the appropriate
extension of our method. For example, in the future, we attempt to combine our inference method
to an adaptation of some methods of learning stochastic grammars in the aim to generate stochastic
L-systems. We also aim to perform the algorithm to work incrementally, and include negative
samples (strings that the inferred 0L-system must refuse). This method can be considered as a
theoretical step towards more practical results in the future. In this aim, we intend to compare the
SAR method with the method described in (Godin and Ferraro, 2007) for quantifying self-
similarity in plants.
Acknowledgments: I would like to thank Christophe Godin and Pascal Ferraro for the interactive
feedback that helped creating the SAR-method.
References
Adriaans, P. , Fernau, H., Van Zaanen, M., (2002). Grammatical Inference: Algorithms and Applications;

6th International Colloquium, ICGI 2002, volume 2484 of LNCS/LNAI. Springer.
Cornuéjols, A., Miclet, L., (2002). Apprentisage artificiel : concepts et algorithmes. Eyrolles.
Doucet, P. G., (1974). The syntactic inference problem for D0L-sequences, lecture notes in Computer

Science 15.
Feliciangeli, H., Gabor, Herman, T., (1973). Algorithms for producing grammars from sample derivations: a

common problem of formal language theory and developmental biology, journal of computer and system
sciences 7, 97-118.

Fernau, H., De la Higuera, C., (2004). Grammar Induction:An Invitation for Formal Language Theorists,
Grammars , volume 7, 45–55.

Ferraro, P., Godin, C., Prusinkiewicz, P., (2005). Toward a Quantification of Self-similarity in Plants, in
Fractals, Vol. 13, No. 2, 91-109.

Godin, C. and Ferraro, P. (2007). A general method for quantifying the structural self-similarity of trees.
Technical report, INRIA.

49-4

Gold, E.M., (1967). Language Identification in the limit, Information and control, Vol.10, No.5, pp, 447-474.
Herman, G.T., Walker, A. D., (1972). The syntactic inference problem applied to biological systems, in

“Machine Intelligence 7” (Michie, Ed.), Edinburgh University Press, Edinburgh.
Jacob, C., (1998). Genetic L-system programming, Chair of programming Languages, Department of

computer Science, University of Erlangen-Nurnberg, Germany.
Koza, J. R., (1993). Genetic programming, On the programming of computers by means of natural selection,

MIT Press, London.
Nevill-Manning, Craig G., Witten, Ian H., (1997). Identifying Hierarchical Structure in Sequences: A linear-

time algorithm. Journal of Artificial Intelligence Research 7, 67–82
Prusinkiewicz, P., (2004). Self-similarity in plants: integrating mathematical and biological perspectives. In:

M.M. Novak (Ed.) Thinking in Patterns. Singapore: World Scientific.
Prusinkiewicz, P., Hammel, M., Mech, R., Hanan, J., (1995). The Artificial Life of Plants. From artificial life

for graphics, animation, and virtual reality, volume 7 of SIGGRAPH’95. ACM Press.
Yokomori, T.,(1992). Inductive inference of 0L languages, in: G. Rozenberg and A. Salomaa (eds.),

Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and
Developmental Biology, Springer, 115-- 132.

Annex: Pseudo code of the SAR algorithm:
Repeat for all strings of I+={xi, i=1..|I+|} #detection of nested modules

For all sub-strings yj of xi with 2 len(yj) len(xi) and yj is well-parenthesed:
If is_recursive1(yj)=true then

Create a recursive rule of the form A c1Ac2 Ac3 …cd-1 Acd and A
Replace the module yj in xi by the symbol A.
Add sub-modules c1,c2,c3 …cd-1,cd, to I+ in the aim to be also considered later.

else if is_recursive2(yj)= true then
Create the productions A Aa, A a
Replace occurrences of yj in xi by the symbol A.
Add the sub-module a to I+ in the aim to be also considered later.

Until stabilization of I+
Repeat for all strings of I+={xi, i=1..|I+|} #detection of repeated modules like in (Nevill-

For all sub-strings yj of xi with 2 len(yj) len(xi) and yj is well-parenthesed: # Manning and Witten, 1997)
If yj is quite simply a repetition in I+ (i.e. if the number of occurrences of yj in strings of I+ is >1) then

Create the production A yj
Replace all occurrences of yj by the symbol A
Add the sub-module yj to I+ in the aim to be also considered later.

Until stabilization of I+.
Function is_recursive1(yj) # this function verifies whether yj correspond to a module that can be regularly

begin decomposed into other nested modules (if yj is self-similar)
A0=yj #max-len-red try to find the longest repeated sub-string of yj that are also
A1=max-len-red(A0) well-parenthesed
While max-len-red(Ak) ’’ and are isomorphic to all the precedent created A1..Ak-1
 Ak+1= max-len-red(Ak)

Replace occurrences of max-len-red(Ak) in Ak by Ak+1
 k=k+1
if k 2 then is_recursive1(yj)=true

return the list (c1,c2, …,cd,) with yj= c1A0c2 A0c3 …cd-1 A0cd and Ak=
else is_recursive1(yj)=false

end
Function is_recursive2(yj) detects the existence of the smallest sub-module “a” in yj so that yj is composed of a
succession of this module (yj=”aa...a”), if this module exists this function takes the value of true and returns “a”.
Example explaining the steps of function is_recursive1(yj):
Let yj= “aaa b cba b ccbaa b cba b ccc”, Thus we have:
 A1=max-len-red(yj)= “aa b cba b cc” yj=”aA1bA1c”

A2=max-len-red(A1)=”a b c” A1=”aA2bA2c”
A3=max-len-red(A2)=” ” A2=”aA3bA3c”
max-len-red(A3)=”” end of the loop while

Remark that all modules yj, A1, A2 are isomorphic (they have the same structure up to the indexing of of Ak). We find
here a suite in the development of the module yj that can be generalized by the rules A aAbAc, A . A is called
recursive symbol.

49-5

	ADP292.tmp

