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Introduction 
Many algorithms of grammatical inference were developed for several types of grammars 
(Adriaans, Fernau and Van Zaanen, 2002). The inference problem consists of finding, from a set of 
strings, a grammar that produces all the strings of this set (Miclet and Cornuéjols, 2002). We are 
interested here by the inference of a particular class of L-systems, noted the 0L-systems 
(Yokomori, 1992). We present a heuristic algorithm, which only uses positive sample 
corresponding to either independent or developmental biological structures. The positive sample
noted I+ is the set of all strings that the inferred 0L-system must produce. It is a non-incremental 
algorithm in the sense that the positive sample becomes unchanged (new strings cannot be added 
progressively) (Miclet and Cornuéjols, 2002). 
Biological motivation

Developmental biology and inference: The problem of inductive inference has in recent years 
been extensively investigated. It has particular significance for developmental languages in which 
the description of the developmental stages of an organism is formally defined as a series of strings 
of symbols. The problem is to devise developmental rules which transform the strings of symbols 
in a way consistent with observations for a particular species. In this sense, there is an overlap 
between model building in developmental biology and the grammatical inference problem. This 
problem enters the realm of developmental biology in the following way. The biologist interested 
in a particular plant is confronted with a large number of experimental observations. His task is to 
explain on the basis of such experimental results the way in which the particular plant develops 
(Feliciangeli, Gabor and Herman, 1973). 

Studying self-similarities in plant structures: In the growth processes of many living 
organisms, especially plants, regularly repeated appearances of closely related biological structures 
are readily noticeable. This phenomenon of self-similarity has been tentatively captured by several 
botanical notions (Prusinkiewicz 2004), (Ferraro, Godin, and Prusinkiewicz, 2005). Our main 
objective is to use the grammatical inference in the detection of this self-similarity from a symbolic 
representation of a tree structure in development, or from several tree structures corresponding to 
different varieties in the aim to compare them. 
Complementary arguments for such a biological motivation, as well as some similar problems, are 
discussed in (Herman and Walker, 1972). 
Specificities of the proposed method  
Inference of L-systems was recently studied using genetic programming (Jacob, 1998). By 
proposing this new heuristic method we avoid some of the drawbacks of the genetic algorithms, 
i.e.: uncertainty on the algorithm convergence, unknown time of convergence, the great spatial 
complexity dependent on the size of the population ... (Koza, 1993). On the other hand, the 
advantages of this algorithm, regarding to the other heuristic algorithms already proposed (Doucet, 
1974; Feliciangeli, Gabor and Herman, 1973; Herman and Walker, 1972; Nevill-Manning and 
Witten, 1997), are its ability to:  
- work on tree structures while previous works were limited to simple sequences like red algae,  
- perform on any kind of sequence (containing ordered or unordered strings of I+, independent or 
developmental, structures), the others performs only on ordered sequences in development, 
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- generalize the rules by studying the possible existing recursivities. The generalization consists 
on the creation of a grammar that generates the language containing the positive sample. By 
comparison, let us consider the method of Nevill-Manning and Witten (1997) in which they 
proposed an algorithm that forms a grammar from a sequence based on repeated phrases in that 
sequence. Each repetition gives rise to a rule in the grammar, and the repeated subsequence is 
replaced by a non-terminal symbol. In this case the grammar is inferred from a positive sample 
containing only one sequence, and it can only generate this sequence without generalization (only 
non-recursive grammar are inferred by this method). This process cannot represent the biological 
development of a plant structure in which repeated modules as well as modules generated by a 
regular developmental model, called self-similar modules, can be found. The detection of self-
similar modules and their representation by recursive rules avoids doing the generalization of the 
resulting L-system. This represents the specificity of our new method. 
Description of the SAR method 
The particularity of L-systems is their ability to models the development of higher plants and 
complex branching structures, described as configurations of modules in space; the term module 
denotes any discrete constructional unit that is repeated as the plant develops (Prusinkiewicz, 
Hammel, Mech, and Hanan, 1995).  
The main idea in the inference of 0L-system generating a sequence of strings associated with the 
sequence of structures of plants is to explore all sub-strings of the sequence strings and to select 
those representing modules that correspond to two cases: In the first one, the selected module can 
be decomposed into other nested modules; the nesting must be done in a regular manner which 
leads to the creation of a recursive rule. In this case, the modules are called self-similar in the sense 
that they are composed of a succession of possibly nested identical sub-modules. In the second 
case, the selected module is only repeated in the sequence of the developmental structure, and then 
the rule inferred simply associates one symbol with this module. These two cases are considered 
respectively in the first and the second loop repeat of the SAR algorithm mentioned in the annex.  
The selection of modules must take into account the vocabulary used to represent the branching 
structure in the 0L-systems using the turtle interpretation (Prusinkiewicz, Hammel, Mech, and 
Hanan, 1995). Each module corresponds to a valid plant structure if and only if the associated 
string (containing brackets to represent branches) is well-parenthesed.  
The proposed Method SAR: (search of self-similarities and redundancies) builds a 0L-system 
starting from a positive sample I+={xi, i=1..|I+|} by making a partition of each string xi into repeated 
or recursive sub-strings being able to be produced in the same step of derivation (to deal with the 
parallelism in the derivation in the L-systems). This partition includes well-parenthesed sub-strings 
lengths varying from n to 2 with n=len(xi). The recursive application of this principle to unit I+
enables us to reconstitute all the successive steps for the generation of all strings of I+.
The method SAR identifies in the limit the 0L-system generating I+ , since it makes it possible to 
reduce successively all the strings of I+ after N steps (Gold, 1967), the algorithm then converges 
towards a solution, starting from a finite N, i.e.HN-1(I+)= HN(I+). Where N is at most equal to the 
number of productions created by the algorithm plus 1. 
The method SAR was developed in python which requires about 550 lines for the algorithm. The 
temporal complexity of SAR is O(r.m.n), where n=|xi| and xi is the longest string in the positive 
sample, m is the size of the positive sample I+. In the worst case the algorithm creates 1 production 
at each step of the two loops Repeat doing the detection of nested modules and the detection of 
repeated modules in the SAR algorithm given in the annex, then the algorithm performs this  
creation of productions r times, with r=max(number of recursive versus non-recursive symbols). 
Examples
1) Positive sample I+ containing strings associated to independent plants. The first one 
correspond to the step 3 of development of the plant of figure2(a) generated by the L-system 
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L1(Axiom: F productions: F FF-[Fc-F+F+F]d+[Fc+F-F-F]d  c c,  d d; homomorphism c ,  d ;), the 
second correspond to the step 2 of development of the plant of figure2(b) generated by the             
L-system L2(axiom: F productions: F FF+\[,+F-&Fc[-F+F+F+F]d-F]-\[,-&Fc[-F+F+F+F]d+F] c c, d d; 
homomorphism c , d ;). The resulting inferred L-system must be the union of L1 and L2.

(a)       (b) 
Figure 2: (a) Steps 2, 3 and 4 of the plant generated by L1,

(b) Steps 2, 3 and 4 of the plant generated by L2, using the L-studio v.4.0.5 beta 

Result of the SAR algorithm: axiom: h
productions:  
h -> b h -> a 
b->bb+\[,+bgbc[-b+b+b+b]d-b]-\[,gbc[-
b+b+b+b]d+b] 
a -> aa-[ac-a+a+a]d+[ac+a-a-a]d 
c -> c, 
d -> d; 

homomorphism: 
b -> F
a -> F 
g -> -& 
c -> ,
d -> ; 

The resulting L-system is the union of L1 and L2. The development of trees associated to L1 and L2
correspond respectively to the recursive symbols a and b in the inferred L-system; representing the 
self-similarity in the development of the tow structures of figures 2(a) and 2(b). They also have 
common sequences of successive ‘,’ and ‘;’ represented respectively by the recursive symbols c 
and d. Then we find in the inferred L-system common rules corresponding to c and d.  
2) Positive sample I+ containing a sequence of strings associated with different stages of
development of the plant (stages 2 and 3 of figure1).

Figure1: Steps 2,3,5 of the plant generated by the          
L-system L1(Axiom: A, A A[+BA]A[-CA]A, B BF[-
FD], C CF[+FD], homomorphism A F, B F[-FD], 
C F[+FD], D [F+F]) using L-studio v.4.0.5 beta 

The resulting L-system L2 must 
be equivalent to the one used to 
create the positive sample. Result 
of the SAR algorithm: 
axiom: c 
productions:   homomorphism: 
c -> c[+bc]c[-ac]c  c -> F 
b -> bF[-e]  b -> F[-e] 
a -> aF[+e]  a -> F[+e] 

e -> F[F+F] 
The symbols c, a, b are recursive and 
then represent self-similar parts in 
the tree of figure1. 

To study the equivalence between this resulting L-system L  and the one used to generate I (noted 
L ), we verify whether they are isomorphic by an adequate change of the names of the generated 
symbols. The SAR algorithm detects the repetition of F[F+F] represented by the production 
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e F[F+F] in L2, we also remark the repetition of FD in L1 with D [F+F]. Then the symbol e is 
equivalent to FD. By replacing e by FD, and e F[F+F] by D [F+F] in L2, and after replacing the 
axiom c (in L ) by A (used in L ), and the symbols b and a (in L ) by respectively B and C (used in 
L ), we obtain: (

2 1 2

1 axiom: A, productions: D->[F+F], A->A[+BA]A[-CA]A, A->F, B->BF[-FD], B->F[-
FD],                  C->CF[+FD], C->F[+FD]). We thus obtain a transformed L-system identical to that 
used to generate I .+

3) Positive sample I+ containing seven strings associated with an abstract language:
I+={[aaaa[ccccccc]aaaadt]b[aaaa[cc]aaaadt]b[aaaa[ccccccc]aaaadt]b, dtcfcfcfdt[aaaaaa[ccccccc]aaaaaadt]b 
[aaaaaa[ccccccc]aaaaaadt]bdt, dgrtmmmAmAmmmAmAmmmmmAmAmmmAmAmmm, dthgjdt, [dt][dt][dt], 
[aaaaaa[cccccccccccc]aaaaaadt]b[aaaaaa[cccccccccccc]aaaaaadt]b, dtdthgdthgdtdtdthgdthgdtdt } 
Result of the SAR algorithm: axiom: u 
production
s: 
u -> o 
u -> p 
u -> n 

u -> dgrtA 
u -> qkqpq 
p -> 
[i[e]iq]b 

p -> 
p[i[e]iq]b 
o -> qoqoq 
n -> n[q] 

A -> mAmAm 
k -> kcf 
i -> ia 
e -> ec 

homomorp
hism: 
u -> qsjq 
s -> hg 
q -> dt 

o -> s 
n -> [q] 
k -> cf 
i -> a 
e -> c 

This abstract example finally shows how the SAR approach may be used to infer rules from more 
complex structures.
Conclusion
This paper addressed the problem of inferring a 0L-system from a sequence of tree structures. To 
this end, we introduced the notion of self-similarity detected from symbolic representation of trees. 
In practice, the proposed SAR method proved its efficiency for the inference of abstract languages 
as well as for the languages which, associated with the turtle interpretation, expresses structures of 
trees and their development. 
The class of 0L-systems inferred by this method concern parenthesized languages generating tree 
structures, to infer more realistic structures we must first study the learn-ability of each class of L-
systems (Fernau and De la Higuera, 2004; Yokomori, 1992) and next try to find the appropriate 
extension of our method. For example, in the future, we attempt to combine our inference method 
to an adaptation of some methods of learning stochastic grammars in the aim to generate stochastic 
L-systems. We also aim to perform the algorithm to work incrementally, and include negative 
samples (strings that the inferred 0L-system must refuse). This method can be considered as a 
theoretical step towards more practical results in the future. In this aim, we intend to compare the 
SAR method with the method described in (Godin and Ferraro, 2007) for quantifying self-
similarity in plants.  
Acknowledgments: I would like to thank Christophe Godin and Pascal Ferraro for the interactive 
feedback that helped creating the SAR-method. 
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Annex: Pseudo code of the SAR algorithm: 
Repeat for all strings of I+={xi, i=1..|I+|}     #detection of nested modules

For all sub-strings yj of xi with 2 len(yj) len(xi) and yj is well-parenthesed: 
If is_recursive1(yj)=true then       

Create a recursive rule of the form A c1Ac2 Ac3 …cd-1 Acd and A
Replace the module yj in xi by the symbol A.  
Add sub-modules c1,c2,c3 …cd-1,cd,  to  I+ in the aim to be also considered later.   

else if is_recursive2(yj)= true then       
Create the productions A Aa, A a    
Replace occurrences of yj in xi by the symbol A.   
Add the sub-module a to I+ in the aim to be also considered later.   

Until stabilization of I+
Repeat for all strings of I+={xi, i=1..|I+|}        #detection of repeated modules like in (Nevill-

For all sub-strings yj of xi with 2 len(yj) len(xi) and yj is well-parenthesed:   # Manning and Witten, 1997)
If yj is quite simply a repetition in I+ (i.e. if the number of occurrences of yj in strings of I+ is >1) then  

Create the production A  yj
Replace all occurrences of yj by the symbol A  
Add the sub-module yj to I+ in the aim to be also considered later.   

Until stabilization of I+.
Function is_recursive1(yj)   # this function verifies whether yj correspond to a module that can be regularly  

begin     decomposed into other nested modules (if yj is self-similar)
A0=yj    #max-len-red try to find the longest repeated sub-string of yj that are also
A1=max-len-red(A0)          well-parenthesed 
While max-len-red(Ak) ’’ and are isomorphic to all the precedent created A1..Ak-1
 Ak+1= max-len-red(Ak)

Replace occurrences of max-len-red(Ak) in Ak by Ak+1
 k=k+1 
if k 2 then  is_recursive1(yj)=true

return the list (c1,c2, …,cd, ) with yj= c1A0c2 A0c3 …cd-1 A0cd and Ak=
else  is_recursive1(yj)=false

end
Function is_recursive2(yj) detects the existence of the smallest sub-module “a” in yj so that yj is composed of a 
succession of this module (yj=”aa...a”), if this module exists this function takes the value of true and returns “a”. 
Example explaining the steps of function is_recursive1(yj):
Let yj= “aaa b cba b ccbaa b cba b ccc”, Thus we have: 
 A1=max-len-red(yj)= “aa b cba b cc”  yj=”aA1bA1c”

A2=max-len-red(A1)=”a b c”   A1=”aA2bA2c”
A3=max-len-red(A2)=” ”    A2=”aA3bA3c”
max-len-red(A3)=””    end of the loop while 

Remark that all modules yj, A1, A2 are isomorphic (they have the same structure up to the indexing of of Ak ). We find 
here a suite in the development of the module yj that can be generalized by the rules A aAbAc, A . A is called 
recursive symbol. 
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