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Introduction

Apical meristems are small embryogenic regions, located at the tip of plant axes, that build up
plant organs by cellular division. The production of the meristems depends on their internal
physical, physiological and genetic state and is controled by contextual factors (like micro-
environment, availability of nutrients, etc.). In principle, the number of variables that may
be used to define the state of a meristem, taking account the nature and the concentrations
of molecules in each cell, their position, the physical stresses at each point, the geometry
of cells, their genetic contents, etc., is infinitely large. Due to this intrinsic complexity, and
to the current lack of hindsight on processes at such small scales, the connection between
a meristem state, its micro-environment and what it produces at varying time scales seems
until now largely out of reach.

However, the remarkable organization of plants at macroscopic scales makes the situation not
so hopeless. The fact that plants are made up of the repetition of many similar components,
at different scales e.g. (Arber, 1950; Hallé et al., 1978; Gatsuk et al., 1980; Harper et al.,
1986; Barthélémy et al., 1997; Godin and Caraglio, 1998), provides macroscopic evidence for
regularities and similarities in processes that drive meristem activity at microscopic scales.

In this paper, we propose to formalize this connection between macroscopic observations
and microscopic, mostly invisible, processes. To achieve this connection, we formulate the
following simplifying, though fundamental, scaling hypothesis during growth :

Scaling hypothesis: If two branching structures in a plant are similar, they were (probably)
produced by meristems with similar states and contexts.

In other terms, if we consider the function that associates each branching structure of a
plant with the state of the meristem that produced it, this scaling hypothesis states that this
function is continuous. Note that this implicitly requires that metrics are defined on both the
branching system space and the meristem state space. In this presentation, we shall show
that it is possible to use this idealized - but useful - hypothesis to organize the multitude of
meristem states and contexts by classes of equivalence with respect to the similarity of what
they produce.

In this first approach, the similarity between branching systems is considered to be purely
structural (no geometry is taken into account for instance). Due to the nested nature of these
structures, we show that the study of similarities between all parts of a plant boils down to
studying the self-similar nature of the plant structure. Based on previous attempts to quantify
self-similarity in plants (Prusinkiewicz, 2004; Ferraro et al., 2005), we introduce a new method
that enables us to define the degree of self-similarity of any plant as a departure coefficient
from pure self-similarity. As a by-product, the method enables us to identify hierarchies of
classes of meristem states.
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From biology to mathematical formalization: modelling plant architecture
self-similarity

Different strategies can be used to define an equivalence relationship between branching sys-
tems. They can be equivalent because they have the same root diameter, because they have
the same size or because they bear the same number of flowers. Here we consider struc-
tural equivalence. Formally, this comes down to defining a notion of isomorphism between
branching systems. In (Ferraro et al., 2005), we defined isomorphism between axial branch-
ing systems (i.e. branching systems for which a trunk is defined). Here we consider a less
restrictive class of isomorphim between branching systems which holds for any type of tree
structure. In the following, any graph G is represented by a pair (V,E) where V is the set of
vertices of G and E its set of edges (i.e. a set of oriented pairs of vertices). A tree-graph is
a graph for which a particular vertex, called the root, is identified and such that any vertex
different from the root is linked to the root by a unique oriented path in the graph (see (Godin
and Caraglio, 1998) for detailed definitions).

Definition 1 (tree isomorphism). Let T1 = (V1, E1) and T2 = (V2, E2) be two rooted trees.
A bijection φ from V1 to V2 is a tree isomorphism if for each edge (x, y) ∈ E1, (φ(x), φ(y)) ∈
E2. We note T1 ≡ T2.

To compute whether two branching structures T1 and T2 are isomorphic, we use a notion of
edit-distance between trees (Zhang, 1996; Ferraro and Godin, 2000). The distance between
T1 and T2, D(T1, T2), is defined as the minimal number of elementary edit operations (insert,
delete or match vertices) that is necessary to transform T1 into T2. This distance has the
following property: D(T1, T2) = 0 ⇔ T1 ≡ T2.

Definition 2 (Reduction of a tree). Let T be a tree, we denote by R(T ) the graph obtained
by quotienting T by the equivalence relation ≡. We call this graph the reduction of T .

This definition relies on the construction of a graph corresponding to the reduction of the
initial tree, when all the structural redundancy has been removed. It can be shown that this
graph is a directed acyclic graph (DAG) and that there exists an algorithm that can compute
this DAG in time O(|T |2ln|T |) (Godin and Ferraro, 2007). Let us call linear a DAG for which
there exists a path going through all its vertices. Then, by definition, we say that a tree T is
self-similar if R(T ) is linear.

Under the scaling hypothesis, the nodes of R(T ) can be interpreted as meristem states, and the
edge between two states would denote the occurence of a meristem differentiation (from the
initial to the final state). Paths in R(T ) therefore denote all possible meristem differentiation
sequences. In self-similar plants, there is thus a unique differentiation sequence for all the
meristems of the plant.

Among all the self-similar trees, let us denote S(T ) the subset of self-similar trees that contain
T . Then, we consider trees T ∗ in this set that minimize the distance to T .

Definition 3 (Smallest Self-similar Tree, SST). Let T be a tree and S(T ) be the set of
all the self-similar trees that contain T . Then, we define the set of smallest self-similar trees
containing T by: SST(T ) = {T ∗|T ∗ = argmin

T ′∈S(T )
D(T, T ′)}

48-2



We show that, for any tree T , it is possible to find an element T ∗ ∈ SST(T ) in polynomial
time3 O(h×w× ln(w)), and give the corresponding algorithm (Godin and Ferraro, 2007). In
addition, the algorithm returns the mapping from T ∗ to T that corresponds to the minimal
distance D(T, T ∗). Under the scaling hypothesis, this makes it possible to associate with
each tree T a single sequence of states. This sequence may be interpreted as the template
differentiation sequence of the plant meristems. Thanks to the mapping from T ∗ to T , each
branching system of the original plant may then be associated with one of these computed,
hypothetical, meristem states, representing the state of the meristem that produced this
branching system.

Hierarchical organization of meristem states in Rice

The above approach was tested on different plant architectures. We present here results
corresponding to the analysis of a rice panicle (Fig. 1.a), already described in (Ferraro et al.,
2005). The topological structure of the panicle T is depicted in Fig. 1.b.

We first computed the reduction tree R(T ), (Fig. 1.c). This graph, from which the original
tree can be reconstructed (Godin and Ferraro, 2007), is not linear and shows a number
of different meristem differentiation sequences. By computing an element T ∗ of SST(T )
(Fig. 1.d), it is possible to find a single sequence of meristem state differentiation that
best corresponds to the original plant. The states of this sequence can be subsequently
projected onto the original topological structure using the resulting mapping from T ∗ to T ,
thus providing an interpretation of the entire structure in terms of meristem differentiation
(Fig. 1.e).

Perspectives: from mathematical formalism back to biology

The above approach makes it possible to formally retreive the sequences of meristem state
differentiation corresponding to each axis of a given plant. Based on the scaling hypothe-
sis and its variants, this opens up the perspective to use such an analysis on various plant
species as a guiding principle to further investigate the notion of meristem state and differ-
entiation at a bio-molecular and genetic levels, in the spirit of the pioneering work described
in (Prusinkiewicz et al., 2007).
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Figure 1. a. A rice panicle photograph and b. its topological structure (courtesy of C. Paul-
Victor, Y. Caraglio). c. Its reduction as a DAG, d. the corresponding DAG of its smallest
self-similar tree and e. the projection of meristem states onto its topological structure.
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Hallé, F., Oldeman, R. A. A., and Tomlinson, P. B. (1978). Tropical trees and forests. An
architectural analysis. Springer-Verlag, New-York.

Harper, J. L., Rosen, B. R., and White, J. (1986). The growth and form of modular organisms.
The Royal Society, London, UK.

Prusinkiewicz, P. (2004). Selfsimilarity in plants : integrating mathematical and biological
perspectives. In Novak, M. M., editor, Thinking in Patterns: Fractals and Related Phe-
nomena in Nature, pages 103–118. World Scientific, Singapore.

Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., and Coen, E. (2007). Evolution and
development of inflorescence architectures. Science, 316(5830):1452–1456.

Zhang, K. (1996). A constrained edit distance between unordered labeled trees. Algorithmica,
15(3):205–222.

48-4


	ADP292.tmp

