
The rule-based language XL and the modelling environment

GroIMP, illustrated with simulated tree competition.

Ole Kniemeyer 1 Reinhard Hemmerling 1,∗

Gerhard Buck-Sorlin 1,2 Winfried Kurth 1

1 Brandenburg University of Technology at Cottbus

Chair for Practical Computer Science / Graphics Systems

P.O.Box 10 13 44, 03013 Cottbus, Germany

{okn|rhemmerl|wk}@informatik.tu-cottbus.de

2 Wageningen UR

Crop and Weed Ecology Group

Haarweg 333, 6709 RZ Wageningen, The Netherlands

gerhard.buck-sorlin@wur.nl

∗ corresponding author

Keywords: L-systems, GroIMP, forest, spruce, beech, Picea abies (L.) Karst., Fagus sylvatica L.,
competition, radiation model

1 Introduction

Functional-structural plant modelling has to face three challenges, all dealing with complexity issues:
the complexity of the modelled biological system itself, the complexity of integrating different sources of
knowledge into one consistent modelling framework, and the complexity of implementation and simula-
tion on a computer [1].

All three aspects can lead to long and obscure code when a standard programming language like
C or Java is used, thus stimulating the wish for a model-specification formalism and language that is
specifically adapted to the needs of plant modelling. The most well-known approach towards such a
formalism are L-systems, introduced by Lindenmayer in 1968 and later applied to various aspects of
plant architecture and growth, see [8, 7]. L-systems are rewriting systems operating on strings which
can be interpreted as tree graphs.

However, as a formal tool for plant modelling L-systems still have some limitations [5]. Being based
on strings of symbols, the only directly representable relation between symbols is the neighbourship
of consecutive symbols, and geometry has to be created by an additional step (turtle interpretation).
Modern data structures for 3D geometry like scene graphs do not need such an artificial segregation
between structure and geometry, and graphs in general allow the representation of arbitrary relations.
We thus have designed the formalism of Relational Growth Grammars (RGG) [4] which are rewriting
systems to be applied in parallel to graphs. Nodes of these graphs are objects in the sense of object-
oriented programming and can also represent geometrical entities, for example plant organs. This has the
advantage that the complete model information including structure (specified by arbitrary relationships),
geometry and internal state is always directly accessible within a single representation.

Based on RGGs, we have designed the programming language XL (eXtended L-system language) and
the open-source modelling environment GroIMP [3]. XL extends the standard programming language
Java and implements the formalism of RGGs. We will demonstrate some of the novel features of XL and
the modelling environment GroIMP in the sequel.

1

23-1

2 The Rule-Based Language XL

Like L-systems, relational growth grammars are a formalism, not a concrete programming language.
The concrete programming language XL is a complete extension of Java within which relational growth
grammars can be specified. The common syntax of L-system rules is retained as in the simple rule

A(x) ==> F(x) [RU(30) A(x*0.5)] RH(180) A(x*0.9);

but also more complex rules making use of true graphs and arbitrary context can be specified. In fact,
the definition of XL is quite general and covers not only relational growth grammars, but also allows a
rule-based implementation of other graph rewriting formalisms like vertex-vertex algebras [9, 3] for the
modelling of growth of surfaces.

Within XL, the current structure is represented as a graph whose nodes are Java objects and whose
edges stand for specific relationships. Nodes generalize symbols of L-systems, edges generalize the ad-
jacency of symbols in an L-system string. The software GroIMP provides a set of standard geometric
node classes whose instances play the role of turtle commands of L-systems, but are now conceptually
geometry nodes of a 3D scene graph. This true graph representation is advantageous for several reasons
even if the structure is only tree-like so that it could easily be represented as a bracketed L-system string.

• Nodes are objects in the sense of object-oriented programming. Their classes can be equipped with
methods and define an inheritance hierarchy of which one can take advantage in modelling.

• Nodes have an identity by which they can be addressed. This allows to reference them globally at
any place in the model, regardless of a “cursor” in the structure like the current derivation position
of an L-system interpreter. The following example makes use of this: A dormant bud is activated
if the irradiance exceeds some threshold T. The irradiance is computed by a radiation model which
receives the reference b to the bud in question.

b:DormantBud, (radiationModel.getSensedIrradiance(b).integrate() > T) ==> Bud;

• Traversal within the structure is easy and efficient. There is no need to keep track of the special
bracket symbols when moving forward or backward in the structure, because relationships are
directly represented as edges. This simplifies the implementation of global interactions between
specific parts of the structure.

• Nodes have named parameters, L-system symbols simply number their parameters. Being able to
access parameters by name, a model only needs to deal with the relevant parameters. The unused
parameters are set to default values implicitly. This is especially important for predefined node
classes like turtle commands which have a lot of parameters: their default values are suitable for
most models, but some models may want to tune them to fit their needs. A similar technique based
on structured parameters is available for user-defined symbols within the L+C language [2].

As for L-systems, the rule application is in parallel. The advantage is that, within a single derivation
step, one consistently operates on a single, fixed structure. Contrary to L-systems, nodes of the graph
may not only be created or deleted like L-system symbols, but may also be kept and modified with
respect to their parameters. To ensure the parallel mode also for such parameter modifications of kept
nodes, XL provides special assignments of values to node parameters which are deferred and actually
performed together with structural changes at the end of a step.

Rules of complex models typically require information not only about the nodes that are being
modified, but also about their neighbours or an even wider context, say, the objects in geometric vicinity
or all objects along the path from the root of a plant to the current node. XL’s graph queries greatly
simplify the specification of such models, allowing the search for nodes that fulfil certain conditions in an
arbitrarily large context (namely, the whole graph). As a consequence, every node can have an influence
on any other node within a single rewriting step, whereas L-systems restrict this influence to a finite
local context (or, depending on direction of derivation, to symbols to either the left or right [2]). Thus,
XL’s queries can also be used to implement environmental interactions, or to analyze local and global
properties of simulation results. The following growth rule is an example thereof which scans, for a node
n of a meristem-like type X to be rewritten, the complete graph in order to allow growth only if there is
no F-node within the 60◦ forward cone of n closer than a threshold T.

n:X, (empty((* f:F, (f in cone(n,true,60) && distance(n,f) < T) *))) ==> F [RU(a)X] X;

2

23-2

3 Tree and Competition Model

Figure 1: A screenshot of the GroIMP workbench showing a ren-
dered image of the competition model, the source code, a rendering
message, and a chart of leaf area development.

The modelled trees are young
specimens of spruce (Picea abies
(L.) Karst.) and beech (Fagus syl-
vatica L.) trees. Structural tree
development is implemented by L-
system-style rules which make use
of XL’s control statements like
if or for governing the process
of structure creation. The con-
structed graph is then subjected
to functional rules, which preserve
the structure but modify their ge-
ometric and internal state in or-
der to model, e.g., the production
and partitioning of assimilates or
increment in girth. The produc-
tion of assimilates depends on the
locally available amount of radia-
tion as computed by the radiation
model (see next section), this leads
to a competition for radiation be-
tween individuals.

Within XL, one can enforce
the end of the current derivation
step. Furthermore, the rules to
be applied can be organized in
code blocks and invoked as part
of methods and control structures such as if or for. Thus, time and order of rule application are
completely under the control of the modeller. The model takes advantage of this feature by splitting
up annual growth into several steps that are executed sequentially (e.g., flushing of the annual shoot,
creation of buds for the next annual flush).

The architectural model of spruce is partially based on a previous GROGRA model [7]. The original
model was based on measurements (mean and variance) to create a stochastic model of spruce. The new
model adds light as limiting factor (values obtained from radiation model). In each iteration step, the
amount of light received by the leaves of a branch is used to calculate how much that branch grows.
Since only taking the light into account would result in exponential growth, the maximum value of the
new model (light only) and the old model is used to obtain a value of how much a branch grows. The
effect is that the old model now represents the limits given by other factors (like water, nutrients, etc.)
except light.

The second tree model, representing beech, was designed with GroIMP from the beginning. It is
based on observations of beech plants and on calibration using statistical analysis of model results and
comparision with measured data (for details see [6]). The influence of light on growth is also represented
in this model.

4 Radiation Model

The radiation model presented here uses a reversed path tracer algorithm based on [10]. Here, we give a
brief description, details and full documentation will be available in [3]. The radiation model is invoked
once per simulation step and applied to a scene created within the modelling environment GroIMP.
The scene is a virtual world containing (amongst others) a number of light sources, visible objects, and
light sensors. Essentially, the radiation model computes how much of the radiant power emitted by the
light source(s) is absorbed by the objects in the scene, and how much radiant power is detected by the
sensors. It has thus the functionality of a raytracer, only that the direction of traced rays is reversed.

3

23-3

The amount of radiation absorbed locally by an object or detected by a sensor may be queried at any
point of simulation in order to be used in a model of, e.g., plant growth.

In GroIMP, several types of light sources are supported: Point lights, spot lights, directional lights,
area lights, and a sky. A number of rays is generated by the light sources and traced along their paths
across the scene. Each ray has three associated properties: origin, direction and spectral composition.
One special case of spectral composition is RGB (Red, Green, Blue channel), but spectral compositions
of any kind are possible.

When a ray hits a visible object, the intersection point with this object is calculated and a new
ray is created. The direction and spectral composition of this new ray are determined by the material
properties of the object that was hit. The origin of the new ray is set to the intersection point. The
amount of radiation that was absorbed by the surface is calculated as the difference of the spectrum of
the old and the new ray. This difference is added to the absorption spectrum of the object. For the
new ray the whole process is repeated recursively. The recursion ends if a user-defined recursion depth
is reached, if the contribution of the ray falls below a certain threshold or if no object was hit. Sensors
are treated similarly, except that they do not modify the ray.

Usage of the radiation model is easy. First the model needs to be instantiated with the num-
ber of rays and recursion depth as parameter. Then the radiation contribution in the current scene
is calculated by calling the function compute() on the instance of the radiation model. Now the
amount of radiation received by every object can be queried by calling getRadiantPowerFor(node)
on the radiation model instance, and the amount of irradiance sensed by a sensor is obtained by call-
ing getSensedIrradiance(node). No additional information needs to be provided, since the radiation
model uses the current GroIMP graph as input, also taking into account material properties that were
set for any node.

5 Results and Discussion

Figure 1 shows a screenshot of the GroIMP workbench with a simulation of tree competition in a mixed
coniferous-deciduous stand of beech and spruce trees typically encountered in the montane layer of the
German midland mountain forests. Several elements of the model can be viewed within GroIMP, e.g.,
the source code, some statistics of the rendering procedure in a message window (lower right), and a
chart (lower left) showing the time course of simulated leaf area of spruce and beech. Our model is
capable of a realistic dynamic reproduction of competition, thereby also demonstrating the relative ease
of representing multiple scales (organ, individual, canopy, ...) within GroIMP/XL.

6 Acknowledgements

This research was funded in part by the Deutsche Forschungsgemeinschaft (DFG).

4

23-4

References

[1] C. Godin and H. Sinoquet. Functional-structural plant modelling. New Phytologist, 166:705–708,
2005.

[2] R. Karwowski. Improving the Process of Plant Modeling: The L+C Modeling Language. PhD thesis,
University of Calgary, 2002.

[3] O. Kniemeyer. Design and Implementation of a Graph Grammar Based Language for
Functional-Structural Plant Modelling. PhD thesis, BTU Cottbus, 2007. (forthcoming, see
http://www.grogra.de).

[4] O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. A graph-grammar approach to artificial life. Artificial
Life, 10:413–431, 2004.

[5] O. Kniemeyer, G. Buck-Sorlin, and W. Kurth. GroIMP as a platform for functional-structural
modelling of plants. In Jan Vos, Leo F. M. Marcelis, Peter H. B. de Visser, Paul C. Struik, and
Jochem B. Evers, editors, Functional-Structural Plant Modelling in Crop Production, volume 22 of
Wageningen UR Frontis Series, pages 43–52. Springer, 2007.

[6] O. Kniemeyer, J. Dérer, R. Hemmerling, G. Buck-Sorlin, and W. Kurth. Using the language XL for
structural analysis. In Proceedings of FSPM07 (this volume), 2007.

[7] W. Kurth. Die Simulation der Baumarchitektur mit Wachstumsgrammatiken. Wissenschaftlicher
Verlag Berlin, 1999.

[8] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Měch. Visual models of plant development. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, volume 3, pages 535–597.
Springer, Berlin, 1997.

[9] C. Smith, P. Prusinkiewicz, and F. F. Samavati. Local specification of surface subdivision algorithms.
In John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, AGTIVE 2003, volume 3062 of Lecture
Notes in Computer Science, pages 313–327. Springer, 2003.

[10] E. Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford
University, 1998.

5

23-5

	ADP292.tmp

